Skip to main content
Log in

Solution combustion synthesis of β-Cu2V2O7 nanoparticles: photocatalytic degradation of crystal violet under UV and visible light illumination

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

β-Cu2V2O7 nanoparticles were prepared using a solution-combustion method using two different fuels, which are: Urea and Glycine. The as-prepared catalysts were characterized using X-ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, Brunauer–Emmett–Teller Method, and UV–Vis diffusive reflectance spectroscopy. The photocatalytic activity of copper vanadate was investigated by degradation of cationic dye crystal violet in an aqueous solution under UV and visible light irradiation. The effect of selected parameters such as catalyst mass, dye concentration, and solution pH on the catalytic performances has been discussed. On the other hand, the reuse tests of β-Cu2V2O7 displayed high-performance stability after five cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nguyen CH, Fu CC, Juang RS (2018) Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod 202:413–427. https://doi.org/10.1016/J.JCLEPRO.2018.08.110

    Article  CAS  Google Scholar 

  2. Zhang D, Zeng F (2011) Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J Mater Sci 47(5):2155–2161. https://doi.org/10.1007/S10853-011-6016-4

    Article  Google Scholar 

  3. Loubna N, Youssef M, Ouissal A et al (2019) Kinetic and thermodynamicstudy of the adsorption of twodyes: brilliant green and eriochrome black T using a natural adsorbent “sugarcane bagasse.” Treat Watewater 7:652–659

    Google Scholar 

  4. Benalia MC, Youcef L, Bouaziz MG, Achour S, Menasra H (2021) Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization. Arab J Sci Eng 47:5587–5599

    Article  Google Scholar 

  5. Zhao C, Zhou J, Yan Y et al (2021) Application of coagulation/flocculation in oily wastewater treatment: a review. Sci Total Environ 765:142795. https://doi.org/10.1016/J.SCITOTENV.2020.142795

    Article  CAS  PubMed  Google Scholar 

  6. Salmerón I, Rivas G, Oller I et al (2021) Nanofiltration retentate treatment from urban wastewater secondary effluent by solar electrochemical oxidation processes. Sep Purif Technol. https://doi.org/10.1016/J.SEPPUR.2020.117614

    Article  Google Scholar 

  7. Zhang X, Liu Y (2021) Reverse osmosis concentrate: an essential link for closing loop of municipal wastewater reclamation towards urban sustainability. Chem Eng J. https://doi.org/10.1016/J.CEJ.2020.127773

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abd Elkodous M, El-Sayyad GS, Abdel Maksoud MIA et al (2021) Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. J Hazard Mater. https://doi.org/10.1016/J.JHAZMAT.2020.124657

    Article  PubMed  Google Scholar 

  9. Chong M, Jin B, Chow C et al (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res. https://doi.org/10.1016/j.watres.2010.02.039

    Article  PubMed  Google Scholar 

  10. Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459. https://doi.org/10.1016/J.SOLENER.2004.03.031

    Article  CAS  Google Scholar 

  11. Zhu N, Tang J, Tang C et al (2018) Combined CdS nanoparticles-assisted photocatalysis and periphytic biological processes for nitrate removal. Chem Eng J 353:237–245. https://doi.org/10.1016/J.CEJ.2018.07.121

    Article  CAS  Google Scholar 

  12. Sun C, Yang J, Xu M et al (2022) Recent intensification strategies of SnO2-based photocatalysts: a review. Chem Eng J. https://doi.org/10.1016/J.CEJ.2021.131564

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wu S, Cao H, Yin S et al (2009) Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals. J Phys Chem C 113:17893–17898. https://doi.org/10.1021/JP9068762

    Article  CAS  Google Scholar 

  14. Rather RA, Mehta A, Lu Y et al (2021) Influence of exposed facets, morphology and hetero-interfaces of BiVO4 on photocatalytic water oxidation: a review. Int J Hydrogen Energy 46:21866–21888. https://doi.org/10.1016/J.IJHYDENE.2021.04.060

    Article  CAS  Google Scholar 

  15. Nguyen TD, Nguyen VH, Nanda S et al (2020) BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: a review. Environ Chem Lett 18:1779–1801. https://doi.org/10.1007/S10311-020-01039-0

    Article  CAS  Google Scholar 

  16. Naqvi FK, Beg S, Anwar K (2020) Synthesis of visible light active copper, iron co-doped BiVO4 photocatalyst for the degradation of phenol. Reac Kinet Mech Cat 131(1):409–422. https://doi.org/10.1007/S11144-020-01863-Z

    Article  CAS  Google Scholar 

  17. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599. https://doi.org/10.1021/IE303468T

    Article  CAS  Google Scholar 

  18. da Silva TF, Cavalcante RP, Guelfi DRV et al (2022) Photo-anodes based on B-doped TiO2 for photoelectrocatalytic degradation of propyphenazone: identification of intermediates, and acute toxicity evaluation. J Environ Chem Eng 10:107212. https://doi.org/10.1016/J.JECE.2022.107212

    Article  Google Scholar 

  19. Belghiti M, Tanji K, el Mersly L et al (2022) Fast and non-selective photodegradation of basic yellow 28, malachite green, tetracycline, and sulfamethazine using a nanosized ZnO synthesized from zinc ore. Reac Kinet Mech Cat 2022:1–14. https://doi.org/10.1007/S11144-022-02232-8

    Article  Google Scholar 

  20. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551. https://doi.org/10.1016/J.RSER.2017.08.020

    Article  CAS  Google Scholar 

  21. Zouheir M, Assila O, Tanji K et al (2021) Bandgap optimization of sol–gel-derived TiO2 and its effect on the photodegradation of formic acid. Nano Futures 5:025004. https://doi.org/10.1088/2399-1984/ABFB7D

    Article  CAS  Google Scholar 

  22. Hong YC, Bang CU, Shin DH, Uhm HS (2005) Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma. Chem Phys Lett 413:454–457. https://doi.org/10.1016/J.CPLETT.2005.08.027

    Article  CAS  Google Scholar 

  23. Wiktor J, Reshetnyak I, Strach M et al (2018) Sizable excitonic effects undermining the photocatalytic efficiency of β-Cu2V2O7. J Phys Chem Lett 9:5698–5703. https://doi.org/10.1021/ACS.JPCLETT.8B02323

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Sun Y, Li C, Ci L (2013) Cu3V2O8 hollow spheres in photocatalysis and primary lithium batteries. Solid State Sci 25:15–21. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2013.08.003

    Article  Google Scholar 

  25. Shi R, Wang Y, Zhou F, Zhu Y (2011) Zn3V2O7(OH)2(H2O)2 and Zn3V2O8 nanostructures: controlled fabrication and photocatalytic performance. J Mater Chem 21:6313–6320. https://doi.org/10.1039/C0JM04451B

    Article  CAS  Google Scholar 

  26. Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2016) Novel Schiff base ligand-assisted in-situ synthesis of Cu3V2O8 nanoparticles via a simple precipitation approach. J Mol Liq 216:59–66. https://doi.org/10.1016/J.MOLLIQ.2015.12.100

    Article  CAS  Google Scholar 

  27. Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2016) Facile synthesis, characterization and optical properties of copper vanadate nanostructures for enhanced photocatalytic activity. J Mater Sci 27(5):4871–4878. https://doi.org/10.1007/S10854-016-4370-3

    Article  CAS  Google Scholar 

  28. Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2016) Facile synthesis, characterization and optical properties of copper vanadate nanostructures for enhanced photocatalytic activity. J Mater Sci 27:4871–4878. https://doi.org/10.1007/S10854-016-4370-3

    Article  CAS  Google Scholar 

  29. Khallouk K, Solhy A, Kherbeche A et al (2020) Effective catalytic delignification and fractionation of lignocellulosic biomass in water over Zn3V2O8 mixed oxide. ACS Omega 5:304–316. https://doi.org/10.1021/ACSOMEGA.9B02159

    Article  CAS  PubMed  Google Scholar 

  30. Luo Y, Xu X, Tian X et al (2016) Facile synthesis of a Co3V2O3 interconnected hollow microsphere anode with superior high-rate capability for Li-ion batteries. J Mater Chem A 4:5075–5080

    Article  CAS  Google Scholar 

  31. Sajid MM, Zhai H, Shad NA et al (2021) Photocatalytic performance of ferric vanadate (FeVO4) nanoparticles synthesized by hydrothermal method. Mater Sci Semicond Process 129:105785. https://doi.org/10.1016/J.MSSP.2021.105785

    Article  CAS  Google Scholar 

  32. Wang G, Liang Y, Song J et al (2022) Co-doped MnCeOx/ZrO2 catalysts for low temperature selective catalytic reduction of NO. Res Chem Intermed 2022:1–14. https://doi.org/10.1007/S11164-022-04701-0

    Article  CAS  Google Scholar 

  33. Martin A, Zhang Y, Meisel M (1997) Effect of the surface vanadium valence state on activity and selectivity properties of (VO)2P2O7 used as catalyst in the ammoxidation of toluene. React Kinet Catal Lett 60(1):3–8. https://doi.org/10.1007/BF02477682

    Article  CAS  Google Scholar 

  34. Salah A, Benkhouja K, Jaafari K et al (2005) Structural characterization and magnetic properties of divanadates ZnMV2O7 (M= Co, Ni and Cu). J Alloys Compd. https://doi.org/10.1016/j.jallcom.2005.01.065

    Article  Google Scholar 

  35. Samani M, Ardakani MH, Sabet M (2022) Efficient and selective oxidation of hydrocarbons with tert-butyl hydroperoxide catalyzed by oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles. Res Chem Intermed 48(4):1481–1494. https://doi.org/10.1007/S11164-022-04656-2

    Article  CAS  Google Scholar 

  36. Belaïche M, Bakhache M, Drillon M et al (2004) Effect of non-magnetic impurities on the low-temperature susceptibility of the linear antiferromagnet CuxZn1−xV2O6. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2004.06.114

    Article  Google Scholar 

  37. Wei Q, Wang Q, Li Q et al (2018) Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy 47:294–300. https://doi.org/10.1016/J.NANOEN.2018.02.028

    Article  CAS  Google Scholar 

  38. Zhang D, Zeng F (2012) Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J Mater Sci 47:2155–2161. https://doi.org/10.1007/S10853-011-6016-4

    Article  CAS  Google Scholar 

  39. Zhang S, Hou M, Hou L, Lu M (2016) Synthesis and electrochemical performance of cable-like copper vanadates/polypyrrole nanobelts as anode materials for lithium-ion batteries. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2016.06.046

    Article  Google Scholar 

  40. Hossain MK, Sotelo P, Sarker HP et al (2019) Rapid one-pot synthesis and photoelectrochemical properties of copper vanadates. ACS Appl Energy Mater 2:2837–2847. https://doi.org/10.1021/ACSAEM.9B00179/SUPPL_FILE/AE9B00179_SI_001.PDF

    Article  CAS  Google Scholar 

  41. Heshmati S, Hossini H (2019) Oxidation of crystal violet in aqueous solutions using the fenton process view project now de-toxicity using bioelectrochemical system, bioenergy, biofilm treatment. Int J Health Life Sci. https://doi.org/10.5812/ijhls.94090

    Article  Google Scholar 

  42. Karam FF, Hassan FF, Hessoon HM (2021) Adsorption of toxic crystal violet dye using (Chitosan-OMWCNTs) from aqueous solution. J Phys 1999:012015. https://doi.org/10.1088/1742-6596/1999/1/012015

    Article  CAS  Google Scholar 

  43. Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 02:154–160. https://doi.org/10.4236/WJNSE.2012.23020

    Article  Google Scholar 

  44. Makuła P, Pacia M, Macyk W (2018) How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett 9:6814–6817. https://doi.org/10.1021/ACS.JPCLETT.8B02892/SUPPL_FILE/JZ8B02892_LIVESLIDES.MP4

    Article  PubMed  Google Scholar 

  45. Keerthana SP, Yuvakkumar R, Kumar PS et al (2022) Surfactant induced copper vanadate (β-Cu2V2O7, Cu3V2O8) for different textile dyes degradation. Environ Res 211:112964. https://doi.org/10.1016/J.ENVRES.2022.112964

    Article  CAS  PubMed  Google Scholar 

  46. Yao J, Shen C, Zhang P et al (2012) Enhanced cycle ability of spinel LiMn2O4 by controlling the phase purity and structural strain. J Phys Chem Solids 73:1390–1395. https://doi.org/10.1016/J.JPCS.2012.07.006

    Article  CAS  Google Scholar 

  47. Kwon SN, Song J, Mumm DR (2011) Effects of cathode fabrication conditions and cycling on the electrochemical performance of LiNiO2 synthesized by combustion and calcination. Ceram Int 37:1543–1548. https://doi.org/10.1016/J.CERAMINT.2011.01.028

    Article  CAS  Google Scholar 

  48. Muthamizh S, Yesuraj J, Jayavel R et al (2021) Microwave synthesis of β-Cu2V2O7 nanorods: structural, electrochemical supercapacitance, and photocatalytic properties. J Mater Sci 32(3):2744–2756. https://doi.org/10.1007/S10854-020-05007-W

    Article  CAS  Google Scholar 

  49. Kayani ZN, Umer M, Riaz S, Naseem S (2015) Characterization of copper oxide nanoparticles fabricated by the sol-gel method. J Electron Mater 44(10):3704–3709. https://doi.org/10.1007/S11664-015-3867-5

    Article  CAS  Google Scholar 

  50. Zhou X, Wu G, Wu J et al (2014) Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries. Phys Chem Chem Phys 16:3973–3982. https://doi.org/10.1039/C3CP54428A

    Article  CAS  PubMed  Google Scholar 

  51. Ethiraj AS, Kang DJ (2012) Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett 7:1–5. https://doi.org/10.1186/1556-276X-7-70/FIGURES/4

    Article  Google Scholar 

  52. Song A, Chemseddine A, Ahmet IY et al (2020) Evaluation of copper vanadate (β-Cu2V2O7) as a photoanode material for photoelectrochemical water oxidation. ACS Appl Mater Interfaces. https://doi.org/10.1021/ACS.CHEMMATER.9B04909/SUPPL_FILE/CM9B04909_SI_001.PDF

    Article  PubMed  PubMed Central  Google Scholar 

  53. el Khalfaouy R, Turan S, Rodriguez MA et al (2020) Solution combustion synthesis and electrochemical properties of yttrium-doped LiMnPO4/C cathode materials for lithium ion batteries. J Rare Earths 38:976–982. https://doi.org/10.1016/J.JRE.2019.06.004

    Article  Google Scholar 

  54. Alkorbi AS, Kumar KY, Prashanth MK et al (2022) Samarium vanadate affixed sulfur self doped g-C3N4 heterojunction; photocatalytic, photoelectrocatalytic hydrogen evolution and dye degradation. Int J Hydrogen Energy 47:12988–13003. https://doi.org/10.1016/J.IJHYDENE.2022.02.071

    Article  CAS  Google Scholar 

  55. Sahoo C, Gupta A, Pigments AP-D (2005) Photocatalytic degradation of crystal violet (CI Basic Violet 3) on silver ion doped TiO2. Elsevier, Amsterdam

    Google Scholar 

  56. Muthamizh S, Yesuraj J, Jayavel R et al (2021) Microwave synthesis of β-Cu2V2O7 nanorods: structural, electrochemical supercapacitance, and photocatalytic properties. J Mater Sci 32:2744–2756. https://doi.org/10.1007/S10854-020-05007-W/SCHEMES/2

    Article  CAS  Google Scholar 

  57. Obregón S, Caballero A, Colón G (2012) Hydrothermal synthesis of BiVO4: structural and morphological influence on the photocatalytic activity. Appl Catal B 117–118:59–66. https://doi.org/10.1016/J.APCATB.2011.12.037

    Article  Google Scholar 

  58. Li T, He Y, Cai J et al (2013) Preparation and characterization of Ag-loaded SmVO4 for photocatalysis application. Photochem Photobiol 89:529–535. https://doi.org/10.1111/PHP.12019

    Article  CAS  PubMed  Google Scholar 

  59. Wang S, Guan Y, Wang L et al (2015) Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater. Appl Catal B. https://doi.org/10.1016/j.apcatb.2014.12.047

    Article  Google Scholar 

  60. Upadhyay GK, Rajput JK, Pathak TK et al (2019) Synthesis of ZnO:TiO2 nanocomposites for photocatalyst application in visible light. Vacuum 160:154–163. https://doi.org/10.1016/J.VACUUM.2018.11.026

    Article  CAS  Google Scholar 

  61. Nguyen CH, Fu C-C, Juang R-S (2018) Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.08.110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Khallouk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 91 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussaid, D., Khallouk, K., El Khalfaouy, R. et al. Solution combustion synthesis of β-Cu2V2O7 nanoparticles: photocatalytic degradation of crystal violet under UV and visible light illumination. Reac Kinet Mech Cat 135, 2797–2812 (2022). https://doi.org/10.1007/s11144-022-02273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02273-z

Keywords

Navigation