Skip to main content
Log in

Enhancement of ZnO catalytic activity under visible light by co-doping with Ga and Ti for efficient decomposition of methylene blue

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The properties of ZnO nanoparticles doped with titanium ions (Ti4+) and gallium ions (Ga3+) were modified by sol–gel method. Considering the ion radius of doped metal elements, the radius of Zn ions and the doping limit of ZnO, the doping rate of Ti is fixed at 1 atom%, and the optimal doping amount of Ga is discussed. The Ga/Ti co-doped ZnO nanoparticles were characterized by X-ray diffraction (XRD), ultraviolet/visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and infrared spectroscopy. XRD results show that Ga/Ti co-doped ZnO has hexagonal wurtzite phase structure. With the increase of Ga doping concentration, the particle size of ZnO decreases. Through photoluminescence analysis, it is found that the absorption of Ga/Ti co-doped ZnO in the visible region moves to the long wave direction. In addition, with the increase of Ga doping, the particle size of GTZ powder first decreases and then increases, the band gap also decreases and then increases. When the doping amount of Ga is 1.5 atom%, the photocatalytic activity is the best. The degradation rate of MB was 90% within 2.5 h. Ga/Ti co-doped ZnO nanoparticles have good photocatalytic properties and low cost. They are a promising catalyst for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu X, Yan L, Yin W, Zhou L, Zhao Y (2014) A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. J Mater Chem A 2(31):12296–12303

    Article  CAS  Google Scholar 

  2. Lei C, Meng P, Jiang C, Bei C, Yu J (2017) Synthesis of hierarchical porous zinc oxide (zno) microspheres with highly efficient adsorption of congo red. J Colloid Interface Sci 490:242–251

    Article  CAS  PubMed  Google Scholar 

  3. Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hao R, Xiao X, Zuo X, Nan J, Zhang W (2012) Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J Hazard Mater 209–210:137–145

    Article  PubMed  CAS  Google Scholar 

  5. Le-Minh N, Khan SJ, Drewes JE, Stuetz RM (2010) Fate of antibiotics during municipal water recycling treatment processes. Water Res 44:4295–4323

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Wang XX, Li J, Wang XK (2015) cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions. J Mater Chem A 3:6073–6081

    Article  CAS  Google Scholar 

  7. Gao P, Mao D, Luo Y, Wang L, Xu B, Xu L (2012) Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res 46:2355–2364

    Article  CAS  PubMed  Google Scholar 

  8. He D, Sun Y, Xin L, Feng J (2014) Aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2. Chem Eng J 258:18–25

    Article  CAS  Google Scholar 

  9. Chen R, Wang W, Zhao X, Zhang Y, Wu S, Li F (2014) Rapid hydrothermal synthesis of magnetic coxNi1-xFe2O4 nanoparticles and their application on removal of congo red. Chem Eng J 242:226–233

    Article  CAS  Google Scholar 

  10. Alila S, Boufi S (2009) Removal of organic pollutants from water by modified cellulose fibres. Ind Crops Prod 30:93–104

    Article  CAS  Google Scholar 

  11. Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    Article  CAS  Google Scholar 

  12. Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y, Wang X (2011) Removal of Pb (II) ions from aqueous solutions on few layered graphene oxide nanosheets. Dalton Trans 40:10945–10952

    Article  CAS  PubMed  Google Scholar 

  13. Yang ST, Chen S, Chang Y, Cao A, Liu Y, Wang H (2011) Removal of methylene Blue from aqueous solution by graphene oxide. J colloid Interface Sci 359:24–29

    Article  CAS  PubMed  Google Scholar 

  14. Huang ZH, Zheng X, Lv W, Wang M, Yang QH, Kang F (2011) Adsorption of lead(II) ions from aqueous solution on LowTemperature exfoliated graphene nanosheets. Langmuir 27:7558–7562

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Jiang Z, Zhang L, Kang P, Xie Y, Lv Y, Xu R, Zhang X (2009) Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nanosized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultrason Sonochem 16:225–231

    Article  PubMed  CAS  Google Scholar 

  16. Hao Y, Deng S, Wang R et al (2022) Development of dual-enhancer biocatalyst with photothermal property for the degradation of cephalosporin. J Hazardous Mater 429:128294

    Article  CAS  Google Scholar 

  17. Li ZJ, Zhang FH, Meng AL, Xie CC, Xing J (2015) ZnO/Ag micro/nanospheres with enhanced photocatalytic and antibacterial properties synthesized by a novel continuous synthesis method. RSC Adv 5:612–620

    Article  CAS  Google Scholar 

  18. Meng AL, Shao J, Fan XY, Wang JH, Li ZJ (2014) Rapid synthesis of a flower-like ZnO/rGO/Ag micro/nano-composite with enhanced photocatalytic performance by a one-step microwave method. RSC Adv 4:60300–60305

    Article  CAS  Google Scholar 

  19. Shi BY, Li GH, Wang DS, Feng CH, Tang HX (2007) Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species. J Hazard Mater 143:567–574

    Article  CAS  PubMed  Google Scholar 

  20. Xu YY, Zhou M, Geng HJ, Hao JJ, Ou QQ, Qi SD, Chen HL, Chen XG (2012) A simplified method for synthesis of Fe3O4@PAA nanoparticles and its application for the removal of basic dyes. Appl Surf Sci 258:3897–3902

    Article  CAS  Google Scholar 

  21. Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of aluminacoated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    Article  CAS  PubMed  Google Scholar 

  22. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene–an overview. Environ Sci Pollut Res 20:2828–2843

    Article  CAS  Google Scholar 

  23. Chang X, Li Z, Zhai X et al (2016) Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts. Mater Des 98(15):324–332

    Article  CAS  Google Scholar 

  24. Rokhsat E, Akhavan O et al (2016) Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl Surf Sci 371:590–595

    Article  CAS  Google Scholar 

  25. Doost HA, Ara MM, Koushki E (2016) Synthesis and complete mie analysis of different sizes of TiO2 nanoparticles. Optik 127:1946–1951

    Article  CAS  Google Scholar 

  26. Seyedi M, Haratian S, Vahdati Khaki J (2015) Mechanochemical synthesis of Fe2O3 nanoparticles. Procedia Mater Sci 11:309–313

    Article  CAS  Google Scholar 

  27. Sedlák J, Kuřitka I, Machovský M, Šuly P, Bažant P, Sedláček T (2015) Zinc oxide nanoparticles with surface modified by degradation of capping polymers in situ during microwave synthesis. Adv Powder Technol 26(4):1064–1071

    Article  CAS  Google Scholar 

  28. Sedlák J (2015) Zinc oxide nanoparticles with surface modified by degradation of capping polymers in situ during microwave synthesis. Adv Powder Technol 26:1064–1071

    Article  CAS  Google Scholar 

  29. Yan H, Tian X, Ma F, Sun J (2015) CuO nanoparticles fabricated by direct thermo-oxidation of sputtered Cu film for VOCs detection. Sens Actuators B 221:599–605

    Article  CAS  Google Scholar 

  30. Wang X, Zhang Y, Hao C et al (2014) Solid-phase synthesis of mesoporous ZnO using lignin-amine template and its photocatalytic properties. Ind Eng Chem Res 53(16):6585–6592

    Article  CAS  Google Scholar 

  31. Bijanzad K, Tadjarodi A, Akhavan O (2015) Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II). Chin J Catal 36(005):742–749

    Article  CAS  Google Scholar 

  32. Wang Y, Zhu S, Chen X, Tang Y, Jiang Y, Peng Z, Wang H (2014) One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity. Appl Surf Sci 307:263–271

    Article  CAS  Google Scholar 

  33. Nirmala M, Anukaliani A (2011) Synthesis and characterization of undoped and TM (co, Mn) doped ZnO nanoparticles. Mater Lett 65:2645–2648

    Article  CAS  Google Scholar 

  34. Rasouli S, Moeen SJ (2011) combustion synthesis of co-doped zinc oxide nanoparticles using mixture of citric acid–glycine fuels. J Alloys Compds 509:1915–1919

    Article  CAS  Google Scholar 

  35. Thongsuriwong K, Amornpitoksik P, Suwanboon S (2013) Structure, morphology photocatalytic and antibacterial activities of ZnO thin film prepared by sol–gel dip-coating method. Adv Powder Technol 204:2557–3280

    Google Scholar 

  36. Glasgow A, Glasgow J, Limonta D et al (2020) Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc Natl Acad Sci 117(45):28046–28055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Päivänranta B, Pudas M, Pitkänen O, Leinonen K, Kuittinen M, Baroni P-Y, Scharf T, Herzig H-P (2009) Liquid phase deposition of polymers on arbitrary shaped surfaces and their suitability for e-beam patterning. Nanotechnology 20(22):225305

    Article  PubMed  CAS  Google Scholar 

  38. Ekambaram S, Iikubo Y, Kudo A (2007) combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO. J Alloys Compds 433:237–240

    Article  CAS  Google Scholar 

  39. Lu JF, Zhang QW (2006) Synthesis of N-doped ZnO by grinding and subsequent heating ZnO-urea mixture. Powder Technol 162:33–37

    Article  CAS  Google Scholar 

  40. Sepehr MN, Sivasankar V, Zarrabi M, Kumar MS (2013) Surface modification of pumice enhancing its fluoride adsorption capacity: an insight into kinetic and thermodynamic studies. Chem Eng J 228:192–204

    Article  CAS  Google Scholar 

  41. Akhavan O, Azimirad R, Safa S (2011) Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater Chem Phys 130(1–2):598–602

    Article  CAS  Google Scholar 

  42. Suresh M, Sivasamy A (2020) Fabrication of graphene nanosheets decorated by nitrogen-doped ZnO nanoparticles with enhanced visible photocatalytic activity for the degradation of Methylene Blue dye. J Mol Liq 317:114112

    Article  CAS  Google Scholar 

  43. Zou CW, Rao YF, Alyamani A et al (2010) Heterogeneous Lollipop-like V2O5/ZnO Array: A Promising Composite Nanostructure for Visible Light Photocatalysis. Langmuir 26(14):11615–11620

    Article  CAS  PubMed  Google Scholar 

  44. Zirak M, Akhavan O, Moradlou O et al (2014) Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J Alloy Compds 590:507–513

    Article  CAS  Google Scholar 

  45. Ahmed G, Hanif M, Zhao L et al (2016) Defect engineering of ZnO nanoparticles by graphene oxide leading to enhanced visible light photocatalysis. J Mol Catal A 15:310–321

    Article  CAS  Google Scholar 

  46. Chiu HM, Wu JM et al (2013) Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas. J Mater Chem A 1(18):5524–5534

    Article  CAS  Google Scholar 

  47. Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4(7):4174–4180

    Article  CAS  PubMed  Google Scholar 

  48. Yang S, Ge C, Liu Z, Fang Y, Li Z, Kuang D et al (2011) Novel ga-doped, self-supported, independent aligned zno nanorods: one-pot hydrothermal synthesis and structurally enhanced photocatalytic performance. RSC Adv 1(9):1691–1694

    Article  CAS  Google Scholar 

  49. Park GC, Hwang SM, Lim JH et al (2014) Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method. Nanoscale 6:18

    Google Scholar 

  50. Thambidurai M, Kim JY, Kang CM et al (2014) Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. Renewable Energy 66(6):433–442

    Article  CAS  Google Scholar 

  51. Ra A, Ssk B, Sv B et al (2021) Enhanced optoelectronic properties of Ti-doped ZnO nanorods for photodetector applications. Ceram Int 47(17):24031–24038

    Article  CAS  Google Scholar 

  52. Thongsuriwonga K, Amornpitoksuk P, Suwanboon S (2013) Structure, morphology, photocatalytic and antibacterial activities of ZnO thin films prepared by sol–gel dip-coating method. Adv Powder Technol 24:275–280

    Article  CAS  Google Scholar 

  53. Risbud AS, Spaldin NA, Chen ZQ, Stemmer S, Seshadri R (2003) Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys Rev B 68:205202-1-205202–7

    Article  CAS  Google Scholar 

  54. Chen Y, Bagnall DM, Koh HJ, Park KT, Hiraga K, Zhu Z, Yao T (1998) Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization. J Appl Phys 84:3912–3918

    Article  CAS  Google Scholar 

  55. Fierro JLG, Arrua LA, Lopez Nieto JM, Kremenic G (1988) Surface properties of coprecipitated Vsingle bond Ti single bond O catalysts and their relation to the selective oxidation of isobutene. Appl Catal 37:323–338

    Article  CAS  Google Scholar 

  56. Biesinger MC, Lau L, Gerson AR et al (2012) (2012) The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys Chem Chem Phys 14:15

    Article  CAS  Google Scholar 

  57. Mazaheri H, Ghaedi M, Azqhandi MHA, Asfaram A (2017) Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd(II) removal from a binary aqueous solution by natural walnut carbon. Phys Chem 19:11299–11317

    CAS  Google Scholar 

  58. Asfaram A, Ghaedi M, Goudarzi A, Rajabi M (2015) Response surface methodology approach for optimization of simultaneous dye and metal ion ultrasound-assisted adsorption onto Mn doped Fe3O4-NPs loaded on AC: kinetic and isothermal studies. Dalton Trans 44:14707–14723

    Article  CAS  PubMed  Google Scholar 

  59. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368:540–546

    Article  CAS  PubMed  Google Scholar 

  60. Asfaram A, Ghaedi M et al (2017) Ultrasound-assisted binary adsorption of dyes onto Mn@ CuS/ZnS-NC-AC as a novel adsorbent: application of chemometrics for optimization and modeling. J Ind Eng Chem 54:377–388

    Article  CAS  Google Scholar 

  61. Ungula J, Dejene BF, Swart HC (2018) Band gap engineering, enhanced morphology and photoluminescence of un-doped, Ga and/or Al-doped ZnO nanoparticles by reflux precipitation method. J Lumin 195:54–60

    Article  CAS  Google Scholar 

  62. Yatskiv R, Grym J (2016) Luminescence properties of hydrothermally grown ZnO nanorods. Superlattices Microstruct 99:214–220

    Article  CAS  Google Scholar 

  63. Ahmed AS, Singla ML, Tabassum S, Naqvi AH, Azam A (2011) Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J Lumin 131(1):1–6

    Article  CAS  Google Scholar 

  64. Qiao XQ et al (2018) In situ synthesis of n–n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr (vi). J Mater Chem A 6:22580–22589

    Article  CAS  Google Scholar 

  65. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  66. Mahdavi R et al (2017) Sol-gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles. Adv Powder Technol 28:1418–1425

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the the National Natural Science Foundation of China (No. 61604087) and the Chinese Ministry of Education (111 Project D20015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Sun.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Sun, Y., Guo, J. et al. Enhancement of ZnO catalytic activity under visible light by co-doping with Ga and Ti for efficient decomposition of methylene blue. Reac Kinet Mech Cat 135, 2231–2246 (2022). https://doi.org/10.1007/s11144-022-02239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02239-1

Keywords

Navigation