Skip to main content
Log in

Direct ammoxidation of glycerol to nitriles using Mo/alumina catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Redox phase unpromoted molybdenum catalysts with different Mo loadings (2.5% Mo/γ-Al2O3; 5.0% Mo/γ-Al2O3; 7.5% Mo/γ-Al2O3 and 10.0% Mo/γ-Al2O3) were prepared and characterized for the ammoxidation of glycerol to nitriles, such as acrylonitrile. The best catalyst (10.0% Mo/γ-Al2O3) obtained a yield of 26% in nitriles. The increase in the molybdenum content and its oxidation states along with the amount of weak/moderate acid sites on the support surface are key points for the optimization of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aulakh MK, Pal B (2019) A co-relation study of efficient photocatalytic reduction of aromatic nitriles and band energies of Cu loaded elongated TiO nanocatalysts. J Taiwan Inst Chem Eng 96:559–565. https://doi.org/10.1016/j.jtice.2018.11.009

    Article  CAS  Google Scholar 

  2. Ai C, Gong G, Zhao X, Liu P (2017) Macroporous hollow silica microspheres-supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber. J Taiwan Inst Chem Eng 77:250–256. https://doi.org/10.1016/j.jtice.2017.02.031

    Article  CAS  Google Scholar 

  3. Rezaie F, Pirouzfar V, Alihosseini A (2020) Technical and economic analysis of acrylonitrile production from polypropylene. Therm Sci Eng Prog 16:100463. https://doi.org/10.1016/j.tsep.2019.100463

    Article  Google Scholar 

  4. Martin A, Kalevaru VN (2010) Heterogeneously catalyzed ammoxidation: a valuable tool for one-step synthesis of nitriles. ChemCatChem 2:1504–1522. https://doi.org/10.1002/cctc.201000173

    Article  CAS  Google Scholar 

  5. Zhang Z, Dong B, Zhang Z, Chen J, Xin H, Zhang Q (2020) Separation of acetonitrile + isopropanol azeotropic mixture using ionic liquids with acetate anion as entrainers. Fluid Phase Equilib 521:112725. https://doi.org/10.1016/j.fluid.2020.112725

    Article  CAS  Google Scholar 

  6. Galanov SI, Sidorova OI, Gavrilenko MA (2014) The process of acetonitrile synthesis over γ-Al2O3 promoted by phosphoric acid catalysts. Procedia Chem 10:108–113. https://doi.org/10.1016/j.proche.2014.10.020

    Article  CAS  Google Scholar 

  7. Liebig C et al (2013) Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe, V)-O. Appl Catal B 132:170–182. https://doi.org/10.1016/j.apcatb.2012.11.035

    Article  CAS  Google Scholar 

  8. Pudar S, Oxgaard J, Goddard WA (2010) Mechanism of selective ammoxidation of propene to acrylonitrile on bismuth molybdates from quantum mechanical calculations. J Phys Chem C 114:15678–15694. https://doi.org/10.1021/jp103054x

    Article  CAS  Google Scholar 

  9. Cespi D, Passarini F, Neri E, Vassura I, Ciacci L, Cavani F (2014) Life Cycle Assessment comparison of two ways for acrylonitrile production: The SOHIO process and an alternative route using propane. J Clean Prod 69:17–25. https://doi.org/10.1016/j.jclepro.2014.01.057

    Article  CAS  Google Scholar 

  10. Brazdil JF (2019) The legacy and promise of heterogeneous selective oxidation and ammoxidation catalysis. Catal Today 363:55–59. https://doi.org/10.1016/j.cattod.2019.04.057

    Article  CAS  Google Scholar 

  11. Goyal A (2016) Compositions and methods related to the production of acrylonitrile. https://patents.google.com/patent/US20160368861A1/en. Accessed 26 Jan 2020

  12. Devaux JF and Dubois JL (2016) Process for manufacturing acrolein/acrylic acid. https://patents.google.com/patent/US20130324758A1/en. Accessed 26 Jan 2020

  13. Dubois JL (2010) Method for the synthesis of acrylonitrile from glycerol. https://patents.google.com/patent/US20100048850A1/en. Accessed 26 Jan 2020

  14. Grasselli RK, Trifirò F (2016) Acrylonitrile from biomass: still far from being a sustainable process. Top Catal 59:1651–1658. https://doi.org/10.1007/s11244-016-0679-7

    Article  CAS  Google Scholar 

  15. Trade Map - Trade statistics for international business development (2020) ITC - Trade Map. https://www.trademap.org/Index.aspx?AspxAutoDetectCookieSupport=1. Accessed 10 Sept 2020.

  16. Ruy ADS, Alves RMB, Hewer TLR, Pontes DA, Teixeira LSG, Pontes LAM (2020) Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catal Today. https://doi.org/10.1016/j.cattod.2020.06.035

    Article  Google Scholar 

  17. Wang Z, Wang L, Jiang Y, Hunger M, Huang J (2014) Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration. ACS Catal 4:1144–1147. https://doi.org/10.1021/cs401225k

    Article  CAS  Google Scholar 

  18. Guerrero-Pérez MO, Alemany LJ (2008) Alumina supported Mo-V-Te-O catalysts for the ammoxidation of propane to acrylonitrile. Appl Catal A 341:119–126. https://doi.org/10.1016/j.apcata.2008.02.032

    Article  CAS  Google Scholar 

  19. Abello MC, Gomez MF, Ferretti O (2001) Mo/γ-Al2O3 catalysts for the oxidative dehydrogenation of propane: effect of Mo loading. Appl Catal A Gen 207:421–431. https://doi.org/10.1016/S0926-860X(00)00680-3

    Article  CAS  Google Scholar 

  20. Gadamsetti S, Mathangi N, Hussain S, Velisoju VK, Chary KVR (2018) Vapor phase esterification of levulinic acid catalyzed by γ -Al2O3 supported molybdenum phosphate catalysts. Mol Catal 451:192–199. https://doi.org/10.1016/j.mcat.2018.01.011

    Article  CAS  Google Scholar 

  21. Baek M, Lee JK, Kang HJ, Kwon BJ, Lee JH, Song IK (2017) Ammoxidation of propane to acrylonitrile over Mo-V-P-Oy/Al2O3 catalysts: Effect of phosphorus content. Catal Commun 92:27–30. https://doi.org/10.1016/j.catcom.2016.12.022

    Article  CAS  Google Scholar 

  22. Braithwaite ER and Haber J (2013) Molybdenum: an outline of its chemistry and use. Elsevier Science

  23. Wang B et al (2012) Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3. Appl Catal A 431:144–150. https://doi.org/10.1016/j.apcata.2012.04.029

    Article  CAS  Google Scholar 

  24. Marakatti VS, Mumbaraddi D, Shanbhag GV, Halgeri AB, Maradur SP (2015) Molybdenum oxide/γ-alumina: an efficient solid acid catalyst for the synthesis of nopol by Prins reaction. RSC Adv 5:93452–93462. https://doi.org/10.1039/c5ra12106j

    Article  CAS  Google Scholar 

  25. Thommes M et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:9–10. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  26. Han W et al (2020) Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran catalyzed by ordered mesoporous alumina supported nickel-molybdenum sulfide catalysts. Appl Catal B 268:118748. https://doi.org/10.1016/j.apcatb.2020.118748

    Article  CAS  Google Scholar 

  27. Kouachi K, Lafaye G, Pronier S, Bennini L, Menad S (2014) Mo/γ-Al2O3 catalysts for the Biginelli reaction: effect of Mo loading. J Mol Catal A 395:210–216. https://doi.org/10.1016/j.molcata.2014.08.025

    Article  CAS  Google Scholar 

  28. Yuan P, Cui C, Han W, Bao X (2016) The preparation of Mo/γ-Al2O3 catalysts with controllable size and morphology via adjusting the metal-support interaction and their hydrodesulfurization performance. Appl Catal A 524:115–125. https://doi.org/10.1016/j.apcata.2016.06.017

    Article  CAS  Google Scholar 

  29. Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Production of acrolein from glycerol over silica-supported heteropoly acids. Catal Commun 8:1349–1353. https://doi.org/10.1016/j.catcom.2006.12.006

    Article  CAS  Google Scholar 

  30. Deleplanque J, Dubois JL, Devaux JF, Ueda W (2010) Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catal Today 157:351–358. https://doi.org/10.1016/j.cattod.2010.04.012

    Article  CAS  Google Scholar 

  31. Corma A, Huber GW, Sauvanaud L, O’Connor P (2008) Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal 257:163–171. https://doi.org/10.1016/j.jcat.2008.04.016

    Article  CAS  Google Scholar 

  32. Talebian-Kiakalaieh A, Amin NAS, Hezaveh H (2014) Glycerol for renewable acrolein production by catalytic dehydration. Renew Sustain Energy Rev 40:28–59. https://doi.org/10.1016/j.rser.2014.07.168

    Article  CAS  Google Scholar 

  33. Possato LG, Diniz RN, Garetto T, Pulcinelli SH, Santilli CV, Martins L (2013) A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites. J Catal 300:102–112. https://doi.org/10.1016/j.jcat.2013.01.003

    Article  CAS  Google Scholar 

  34. Mannei E et al (2017) Light hydrocarbons ammoxidation into acetonitrile over Mo–ZSM-5 catalysts: effect of molybdenum precursor. Micropor Mesopor Mat 241:246–257. https://doi.org/10.1016/j.micromeso.2016.12.021

    Article  CAS  Google Scholar 

  35. Jang YH, Goddard WA (2002) Mechanism of selective oxidation and ammoxidation of propene on bismuth molybdates from DFT calculations on model clusters. J Phys Chem B 106:5997–6013. https://doi.org/10.1021/jp0208081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Instituto Brasileiro de Tecnologia e Regulação—IBTR, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq and Fundação de Amparo à Pesquisa do Estado da Bahia—FAPESB.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LDS, and LAMP; Methodology: LDS, RCS and JGABS; Software: LDS; Validation: LDS, RCS, JGABS, EPA, RTFF and LAMP; Formal Analysis: LDS, RCS, JGABS and RTFF; Investigation: LDS, RCS and RTFF; Resources: LAMP; Writing – Original Draft Preparation: LDS, RCS, JGABS, EPA, RTFF and LAMP; Writing – Review & Editing: JF: LDS, RCS, JGABS, EPA, RTFF and LAMP; Supervision: LAMP; Project Administration: LAMP; Funding Acquisition: Luiz Antônio Magalhães.

Corresponding author

Correspondence to Laio Damasceno da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L.D., Santos, R.C., Silva, J.G.A.B. et al. Direct ammoxidation of glycerol to nitriles using Mo/alumina catalysts. Reac Kinet Mech Cat 135, 271–285 (2022). https://doi.org/10.1007/s11144-021-02111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02111-8

Keywords

Navigation