Skip to main content
Log in

Optimization of the enzyme catalyzed ultrasound assisted synthesis of cinnamyl butyrate using response surface methodology

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The detailed optimization study for the ultrasound assisted lipase catalyzed synthesis of cinnamyl butyrate under solvent free conditions was described using central composite rotatable design and response surface methodology. The statistical analysis shows that three out of the four variables tested, i.e. molar ratio (A), enzyme loading (B), and ultrasound intensity (D) are found to be statistically significant. The mutual interactions between molar ratio-enzyme loading (AB) and temperature-ultrasound intensity (CD) are also found to be significant along with quadratic interactions of all the parameters (A2, B2, C2, D2). The maximum conversion of 93% was obtained at optimal conditions; molar ratio 2.5 (cinnamyl alcohol:butyric acid); enzyme loading 2.8% of the total mass of reactants; reaction temperature 46 °C and ultrasound intensity 105 W (ultrasound intensity is 7412.68 W/m2). Additionally, hydrodynamic parameters have been determined to estimate the effect of external and intraparticle mass transfer diffusion, which do not show any significant influence on the reaction rate. Reusability study of biocatalyst shows that it can be used up to three cycles with minimal loss of its enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leblanc D, Morin A, Gu D et al (1998) Short chain fatty acid esters synthesis by commercial lipases in low-water systems and by resting microbial cells in aqueous medium. Biotechnol Lett 20:1127–1131

    CAS  Google Scholar 

  2. Bhatia SP, Wellington GA, Cocchiara J et al (2007) Fragrance material review on cinnamyl butyrate. Food Chem Toxicol 45:S62–S65

    PubMed  Google Scholar 

  3. Liu Y, Lotero E, Goodwin JG Jr (2006) A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis. J Catal 242:278–286

    CAS  Google Scholar 

  4. Waghmare GV, Vetal MD, Rathod VK (2015) Ultrasound assisted enzyme catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Ultrason Sonochem 22:311–316

    CAS  PubMed  Google Scholar 

  5. Bansode SR, Rathod VK (2014) Ultrasound assisted lipase catalysed synthesis of isoamyl butyrate. Process Biochem 49:1297–1303

    CAS  Google Scholar 

  6. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437

    CAS  PubMed  Google Scholar 

  7. Sheldon RA, Van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    CAS  PubMed  Google Scholar 

  8. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    CAS  Google Scholar 

  9. Mesiano AJ, Beckman EJ, Russell AJ (1999) Supercritical biocatalysis. Chem Rev 99:623–633

    CAS  PubMed  Google Scholar 

  10. Yu D, Tian L, Ma D et al (2010) Microwave-assisted fatty acid methyl ester production from soybean oil by Novozym 435. Green Chem 12:844–850

    CAS  Google Scholar 

  11. Cantone S, Hanefeld U, Basso A (2007) Biocatalysis in non-conventional media-ionic liquids, supercritical fluids and the gas phase. Green Chem 9:954–971

    CAS  Google Scholar 

  12. Tomke PD, Rathod VK (2015) Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium. Ultrason Sonochem 27:241–246

    CAS  PubMed  Google Scholar 

  13. Fiametti KG, Sychoski MM, De Cesaro A et al (2011) Ultrasound irradiation promoted efficient solvent-free lipase-catalyzed production of mono-and diacylglycerols from olive oil. Ultrason Sonochem 18:981–987

    CAS  PubMed  Google Scholar 

  14. Waghmare GV, Rathod VK (2016) Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. Ultrason Sonochem 32:60–67

    CAS  PubMed  Google Scholar 

  15. Lerin LA, Feiten MC, Richetti A et al (2011) Enzymatic synthesis of ascorbyl palmitate in ultrasound-assisted system: process optimization and kinetic evaluation. Ultrason Sonochem 18:988–996

    CAS  PubMed  Google Scholar 

  16. Lerin LA, Loss RA, Remonatto D et al (2014) A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst Eng 37:2381–2394

    CAS  PubMed  Google Scholar 

  17. Waghmare GV, Chatterji A, Rathod VK (2017) Kinetics of enzymatic synthesis of cinnamyl butyrate by immobilized lipase. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-017-2464-x

    Article  PubMed  Google Scholar 

  18. Larock RC, Oertle K, Beatty KM (1980) Mercury in organic chemistry. 17. A convenient stereospecific synthesis of enol esters from vinylmercurials. J Am Chem Soc 102:1966–1974

    CAS  Google Scholar 

  19. Cheung K-C, Wong W-L, So M-H et al (2013) A dinuclear ruthenium catalyst with a confined cavity: selectivity in the addition of aliphatic carboxylic acids to phenylacetylene. Chem Commun 49:710–712

    CAS  Google Scholar 

  20. Ye S, Leong WK (2006) Regio- and stereoselective addition of carboxylic acids to phenylacetylene catalyzed by cyclopentadienyl ruthenium complexes. J Organomet Chem 691:1117–1120

    CAS  Google Scholar 

  21. Palacios D, Busto MD, Ortega N (2014) Study of a new spectrophotometric end-point assay for lipase activity determination in aqueous media. LWT - Food Sci Technol 55:536–542

    CAS  Google Scholar 

  22. Ganesan D, Rajendran AVT (2012) Response surface optimization for the transesterification of karanja oil using immobilized whole cells of Rhizopus oryzae in n-hexane system. Biomass Conv Bioref 2:11–20

    CAS  Google Scholar 

  23. Wilmouth RC, Edman K, Neutze R et al (2001) X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate. Nat Struct Biol 8:689–694

    CAS  PubMed  Google Scholar 

  24. Lawrence DA, Ginsburg D, Day DE et al (1995) Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem 270:25309–25312

    CAS  PubMed  Google Scholar 

  25. Hari Krishna S, Karanth NG (2001) Lipase-catalyzed synthesis of isoamyl butyrate: a kinetic study. Biochim Biophys Acta - Protein Struct Mol Enzymol 1547:262–267

    CAS  Google Scholar 

  26. Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715

    CAS  Google Scholar 

  27. Raita M, Kiatkittipong W, Laosiripojana N, Champreda V (2015) Kinetic study on esterification of palmitic acid catalyzed by glycine-based crosslinked protein coated microcrystalline lipase. Chem Eng J 278:19–23

    CAS  Google Scholar 

  28. Halim SFA, Harun Kamaruddin A (2008) Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. Process Biochem 43:1436–1439

    CAS  Google Scholar 

  29. Moholkar VS, Sable SP, Pandit AB (2000) Mapping the cavitation intensity in an ultrasonic bath using the acoustic emission. AIChE J 46:684–694

    CAS  Google Scholar 

  30. Wu TY, Guo N, Teh CY, Hay JXW (2013) Theory and fundamentals of Ultrasound. Advances in ultrasound technology for environmental remediation. Springer, Dordrecht, pp 5–12

    Google Scholar 

  31. Hagenson LC, Naik SD, Doraiswamy LK (1994) Rate enhancements in a solid-liquid reaction using PTC, microphase, ultrasound and combinations thereof. Chem Eng Sci 49:4787–4800

    CAS  Google Scholar 

  32. Tzanakis I, Lebon GSB, Eskin DG, Pericleous K (2015) Effect of input power and temperature on the cavitation intensity during the ultrasonic treatment of molten aluminium. Trans Indian Inst Met 68:1023–1026

    CAS  Google Scholar 

  33. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. Mc Grow Hill Book Company, New York

    Google Scholar 

  34. Jakoveti SM, Lukovi ND, Boskovic-Vragolovic NM et al (2013) Comparative study of batch and fluidized bed bioreactors for lipase-catalyzed ethyl cinnamate synthesis. Ind Eng Chem Res 52:16689–16697

    Google Scholar 

  35. Yadav GD, Dhoot SB (2009) Immobilized lipase-catalysed synthesis of cinnamyl laurate in non-aqueous media. J Mol Catal B 57:34–39

    CAS  Google Scholar 

  36. Miranda JS, Silva NCA, Bassi JJ et al (2014) Immobilization of Thermomyces lanuginosus lipase on mesoporous poly-hydroxybutyrate particles and application in alkyl esters synthesis: isotherm, thermodynamic and mass transfer studies. Chem Eng J 251:392–403

    CAS  Google Scholar 

  37. Taylor R, Krishna R (1993) Multicomponent mass transfer. Wiley, New York

    Google Scholar 

  38. Vignes A (1966) Diffusion in binary solutions : variations of diffusion with composition. Ind Eng Chem Fundam 5:189–199

    CAS  Google Scholar 

  39. Todero LM, Bassi JJ, Lage FAP et al (2015) Enzymatic synthesis of isoamyl butyrate catalyzed by immobilized lipase on poly-methacrylate particles: optimization, reusability and mass transfer studies. Bioprocess Biosyst Eng 38:1601–1613

    CAS  PubMed  Google Scholar 

  40. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng 68:594–601

    PubMed  Google Scholar 

  41. Peter CP, Suzuki Y, Buchs J (2006) Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93:1164–1176

    CAS  PubMed  Google Scholar 

  42. Bhasarkar JB, Chakma S, Moholkar VS (2013) Mechanistic features of oxidative desulfurization using sono fenton-peracetic acid (ultrasound/Fe2+−CH3COOH−H2O2) system. Ind Eng Chem Res 52:9038–9047

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra K. Rathod.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghmare, G.V., Mudaliar, C. & Rathod, V.K. Optimization of the enzyme catalyzed ultrasound assisted synthesis of cinnamyl butyrate using response surface methodology. Reac Kinet Mech Cat 129, 421–441 (2020). https://doi.org/10.1007/s11144-019-01697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01697-4

Keywords

Navigation