Skip to main content
Log in

Base-free glycerol oxidation over N-TiO2 supported Au–Pt catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

N-Doped TiO2 materials were used as support for the bimetallic gold-platinum nanoparticles catalysts. Via the sol immobilization technique, the metal particle dimension varied during the immobilization on the different supports. The prepared TiO2 samples were characterized by X-ray diffraction (XRD), N2 physisorption (BET) and X-ray photoelectron spectroscopy (XPS), while the AuPt-TiO2 catalysts were characterized by transmission electron microscopy (TEM). The oxidation of glycerol by molecular oxygen in the aqueous phase over AuPt/N-TiO2 was investigated in a continuous upflow batch reactor under base-free conditions. The difference in the catalyst activities could be ascribed to the different support. The results revealed that N-doped TiO2 based catalyst support showed a higher activity in the oxidation of glycerol compared to the unfunctionalized one. The highest conversion (92% after 6 h) and the highest selectivity to glyceric acid (79.9%) were achieved using AuPt on TiO2 prepared with chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asakuma Y, Maeda K, Kuramochi H, Fukui K (2009) Fuel 88:786–791

    CAS  Google Scholar 

  2. Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chem Soc Rev 37:527–549

    PubMed  Google Scholar 

  3. Demirel-Gülen S, Lucas M, Claus P (2005) Catal Today 102–103:166–172

    Google Scholar 

  4. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Attard GA, Hutchings GJ (2004) Top Catal 27:131–136

    CAS  Google Scholar 

  5. Sobczak I, Jagodzinska K, Ziolek M (2010) Catal Today 58:121–129

    Google Scholar 

  6. Rodrigues EG, Pereira MFR, Delgado JJ, Chen X, Órfão JJM (2011) Catal Commun 16:64–69

    CAS  Google Scholar 

  7. Villa A, Dimitratos N, Chan-Thaw CE, Hammond C, Prati L, Hutchings GJ (2015) Acc Chem Res 48:1403–1412

    CAS  PubMed  Google Scholar 

  8. Ketchie WC, Murayama M, Davis RJ (2007) Top Catal 44:307–317

    CAS  Google Scholar 

  9. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Chem Commun 2002:696–697

    Google Scholar 

  10. Biella S, Prati L, Rossi M (2002) J Catal 206:242–247

    CAS  Google Scholar 

  11. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1329–1336

    CAS  Google Scholar 

  12. Wang D, Villa A, Porta F, Su DS, Prati L (2006) Chem Commun. https://doi.org/10.1039/B518069D

    Article  Google Scholar 

  13. Shen YH, Zhang SH, Li HJ, Ren Y, Liu HC (2010) Chem Eur J 16:7368

    CAS  PubMed  Google Scholar 

  14. Sullivan JA, Burnham S (2015) Renew. Energy 78:89

    CAS  Google Scholar 

  15. Villa A, Veith GM, Prati L (2010) Angew Chem 122:4601–4604

    Google Scholar 

  16. Villa A, Veith GM, Prati L (2010) Angew Chem Int Ed 49:4499–4502

    CAS  Google Scholar 

  17. Brett GL, He Q, Hammond C, Miedziak PJ, Dimitratos N, Sankar M, Herzing AA, Conte M, Lopez-Sanchez JA, Kiely CJ, Knight DW, Taylor SH, Hutchings GJ (2011) Angew Chem 123:10318–10321

    Google Scholar 

  18. Villa A, Campisi S, Mohammed KMH, Dimitratos N, Vindigni F, Manzoli M, Jones W, Bowker M, Hutchingse GJ, Prati L (2015) Catal Sci Technol 5:1126–1132

    CAS  Google Scholar 

  19. Liang D, Gao J, Wang J, Chen P, Wei Y, Hou Z (2011) Catal Commun 12:1059

    CAS  Google Scholar 

  20. Yang L, Li X, Sun Y, Yue L, Fu J, Lu X, Hou Z (2017) Catal Commun 101:107–110

    CAS  Google Scholar 

  21. Chen Shasha, Qi Puyu, Chen Jin, Yuan Youzhu (2015) RSC Adv 5:31566

    CAS  Google Scholar 

  22. Zhang M, Shi J, Sun Y, Ning W, Hou Z (2015) Catal Commun 70:72–76

    CAS  Google Scholar 

  23. Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) J Phys Chem C 112:14595–14602

    CAS  Google Scholar 

  24. Nolan NT, Synnott DW, Seery MK, Hinder SJ, Van Wassenhoven A, Pillai SC (2012) J Hazard Mater 211–212:88–94

    PubMed  Google Scholar 

  25. Pang YL, Abdullah AZ (2013) Chem Eng J 214:129–138

    CAS  Google Scholar 

  26. Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108:19384–19387

    CAS  Google Scholar 

  27. Valentin CD, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109:11414–11419

    PubMed  Google Scholar 

  28. Sreethawong T, Laehsalee S, Chauadej S (2008) Int J Hydrogen Energy 33(21):5947–5957

    CAS  Google Scholar 

  29. Zhou Wenfang, Liu Qingju, Zhu Zhongqi, Zhang Ji (2010) J Phys D 43:035301

    Google Scholar 

  30. Yu J-G, Yu H-G, Cheng B, Zhao X-J, Yu JC, Ho W-K (2003) J Phys Chem B 107:13871–13879

    CAS  Google Scholar 

  31. Abdullaha AM, Al-Thania NJ, Tawbia K, Al-Kandari H (2016) Arab J Chem 9:229–237

    Google Scholar 

  32. Chi B, Zhao L, Jin T (2007) J Phys Chem C 111:6189–6193

    CAS  Google Scholar 

  33. Fu Y, Du H, Zhang S, Huang W (2005) Mater Sci Eng A 403:25–31

    Google Scholar 

  34. Ren TZ, Yuan ZY, Azioune A, Pireaux JJ, Su BL (2006) Langmuir 22:3886–3894

    CAS  PubMed  Google Scholar 

  35. Shao G-S, Zhang X-J, Yuan Z-Y (2008) Appl Catal B 82:208–218

    CAS  Google Scholar 

  36. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    CAS  Google Scholar 

  37. Gregg SJ, Sing KSW (1982) Adsorption, Surface Area and Porosity, 2nd edn. Academic Press, New York

    Google Scholar 

  38. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Pure Appl Chem 87(9–10):1051–1069

    CAS  Google Scholar 

  39. You YF, Xu CH, Xu SS, Cao S, Wang JP, Huang YB, Shi SQ (2014) Ceram Int 40:8659–8666

    CAS  Google Scholar 

  40. Song H, Jo K, Jung BY, Jung GY (2014) Nano Res 7:104–109

    CAS  Google Scholar 

  41. Liu Y, Chen X, Li J, Burda C (2005) Chemosphere 61:11–18

    CAS  PubMed  Google Scholar 

  42. Chan-Thaw CE, Chinchilla LE, Campisi S, Botton GA, Prati L, Dimitratos N, Villa A (2015) Chemsuschem 8:4189–4194

    CAS  PubMed  Google Scholar 

  43. Villa A, Manzoli M, Vindigni F, Chinchilla LE, Botton GA, Prati L (2017) Diols. Catal Lett 147:2523–2533

    CAS  Google Scholar 

  44. Villa A, Jouve A, Sanchez Trujillo FJ, Motta D, Prati L, Dimitratos N (2018) Catalysts 8:54

    Google Scholar 

  45. Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Catal Today 102–103:203–212

    Google Scholar 

  46. Prati L, Villa A, Chan-Thaw CE, Arrigo R, Wang D, Su DS (2011) Faraday Discuss 152:353–365

    CAS  PubMed  Google Scholar 

  47. Dimitratos N, Lopez-Sanchez JA, Lennon D, Porta F, Prati L, Villa A (2006) Catal Lett 108:3–4

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Elena Ghedini and Prof. Michela Signoretto from CATMAT laboratory in the university Ca’foscari of Venice for the N2 physisorption characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhia Cherni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherni, D., Moussa, N., Nsib, M.F. et al. Base-free glycerol oxidation over N-TiO2 supported Au–Pt catalysts. Reac Kinet Mech Cat 128, 979–990 (2019). https://doi.org/10.1007/s11144-019-01678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01678-7

Keywords

Navigation