Skip to main content
Log in

Attempt to yield light hydrocarbons including C3 fraction by supplying ethene and syngas on Co/SiO2 catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

When a 1:2 gas mixture of CO and H2, namely syngas, was contacted onto Co/SiO2 catalyst at 513 K with low pressure such as 0.2 kg/cm2, G, methanation was preferentially promoted, whereas chain propagation was suppressed. In contrast to this, when 1:3 gas mixture of ethene and syngas was fed onto Co/SiO2 catalyst under the same conditions, hourly productivity of light hydrocarbons involving C3 fraction was increased 3.3-fold as much as that in the case flowing syngas alone at that condition. It was deduced that formation of light hydrocarbon like C3 was caused by capturing methylidene (=CH2) species by ethene on Co/SiO2 catalyst on which reverse metathesis (C2H4 + 2-C4H8 → 2C3H6) following the dimerization of ethene was not concerned with C3 formation. In addition, a small amount of liquefied hydrocarbons was collected despite the low pressure and chain growth probability (α) was presumed 0.73. It might be suggested that co-feeding ethene and syngas onto FT active catalyst like Co/SiO2 was one of effective methods to obtain light hydrocarbons including C3 fraction at low pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chemical Division, Manufacturing Industrial Bureau (2012) Report on future shifts in supply and demand of the petrochemicals in the world. Ministry of Economy, Trade and Industry, Tokyo

    Google Scholar 

  2. O’Donohoe C, Clarke JKA, Rooney JJ (1980) J Chem Soc Faraday Trans 1(76):345–356

    Article  Google Scholar 

  3. Yamaguchi T, Tanaka Y, Tanabe K (1980) J Catal 65:442–447

    Article  CAS  Google Scholar 

  4. Suzuki T, Tanaka K, Toyoshima I (1989) Appl Catal 50:15–25

    Article  CAS  Google Scholar 

  5. Kosugi K, Yamamoto T, Iwamoto M (2003) Catal Catal 45:468–470

    Google Scholar 

  6. Suzuki T (2008) Trans Mater Res Soc Jpn 33:857–860

    CAS  Google Scholar 

  7. Suzuki T (2004) React Kinet Catal Lett 81:327–331

    Article  CAS  Google Scholar 

  8. Ciobica IM (2002) Technische Universiteit Eindhoven. https://doi.org/10.6100/IR551020

    Article  Google Scholar 

  9. Suzuki T (2002) Petrotech 25:590–595

    CAS  Google Scholar 

  10. Fujimoto K, Saima H, Tominaga H (1983) J Jpn Petrol Inst 26:258–263

    Article  CAS  Google Scholar 

  11. Suzuki T, Tajima S, Komatsu H (2006) Bull Gunma Ind Tech Ctr 18:16–19

    Google Scholar 

  12. Choi JG, Choi HK, Jung MK, Oh HG, Choi JO (1997) J Ind Eng Chem 3:235–246

    CAS  Google Scholar 

  13. Sun S, Tsubaki N, Fujimoto K (2000) Appl Catal A 202:121–131

    Article  CAS  Google Scholar 

  14. Ji Y, Duan AD, Jiang G, Liu K (2009) J Phys Chem C 113:7186–7199

    Article  CAS  Google Scholar 

  15. Li Z, Nie Z, Wang L, Zhang S (2006) Chin J Process Eng 4:656–660

    Google Scholar 

  16. Carlsson AF, Naschizki M, Baumer M, Freund HJ (2003) J Phys Chem B 107:778–785

    Article  CAS  Google Scholar 

  17. Hugues F, Besson B, Basset JM (1980) J Chem Soc Chem Commun. https://doi.org/10.1039/C39800000719

    Article  Google Scholar 

  18. Richard LA, Moreau P, Rugmini S, Daly D (2013) Appl Catal A Gen 464:200–206

    Article  CAS  Google Scholar 

  19. Gonzalez-Cortes SL, Rodulufo-Baechler SMA, Oliveros A, Orozco J, Fontal B, Mora AJ, Delgado G (2002) React Kinet Catal Lett 75:3–12

    Article  CAS  Google Scholar 

  20. Vannice MA (1977) U S Patent: 4042615

  21. Handzlik J, Ogonowski J (2003) Catal Lett 88:119–122

    Article  CAS  Google Scholar 

  22. Takeuchi K, Hanaoka T, Matsuzaki T, Sugi Y, Asaga H, Abe Y, Misono T (1993) J Chem Soc Jpn 1993:901–903

    Google Scholar 

  23. Mizushima T, Tanabe T, Uenishi Y, Kakuta N, Ueno A, Takeuchi K, Sugi Y, Odagawa Y (1994) J Chem Soc Jpn 1994:31–38

    Google Scholar 

  24. Fang YZ, Liu A, Zhang LH (2011) Appl Catal A 397:183–191

    Article  CAS  Google Scholar 

  25. Fujimoto K (1983) Org Synt Chem (Yukigouseikagaku) 41:532–544

    Article  CAS  Google Scholar 

  26. Onishi Y, Kato A, Murata E, Yamada E, Wakabayashi O (2010) Nippon Steel Eng Tech Rep 1:29–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Murakami, E. & Takahashi, K. Attempt to yield light hydrocarbons including C3 fraction by supplying ethene and syngas on Co/SiO2 catalyst. Reac Kinet Mech Cat 126, 963–973 (2019). https://doi.org/10.1007/s11144-019-01537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01537-5

Keywords

Navigation