Skip to main content
Log in

Influence of post-synthetic treatments of aluminum-rich ZSM-5 on the catalytic cracking of bulky hydrocarbons at low temperature

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The influence of post-synthetic modifications of Al-rich ZSM-5 (Si/Al ratio ca. 10) involving alkaline and subsequent acid treatments on the textural, acidic and catalytic properties in the cracking of bulky hydrocarbon molecules at low temperature is reported. It was found that the optimized base treatment, i.e. 0.5 M NaOH should be used for the substantial generation of intracrystal mesoporosity while preserving the intrinsic zeolite properties of ZSM-5 zeolite. A subsequent strong acid washing, i.e. 0.5 M HCl is required to completely remove Al-rich debris formed during the base treatment, thereby improving the textural and acidic properties. The catalytic performance of the parent and treated ZSM-5 materials was evaluated in the gas phase cracking of 1,3,5-triisopropylbenzene (TIPB) and cumene as test reactions. The results showed that under the applied cracking conditions, the introduction of mesoporosity by the optimized base–acid treatments on the one hand increased the accessibility of Brønsted acid sites, producing a higher TIPB conversion (82.5% as compared to 61.9% of the parent ZSM-5), on the other hand, it promoted the transformation of pre-cracking products, leading to a higher selectivity to deep cracking products, i.e. the selectivity of cumene and benzene of 22.7% as compared to 17.6% of the parent ZSM-5. A similar conclusion has been reached in the cracking of cumene where the presence of considerable mesoporosity indeed improved cumene reactivity of the alkaline and acid treated ZSM-5 as its density of strong zeolite Brønsted sites was mainly retained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stoecker M (2005) Gas phase catalysis by zeolites. Microporous Mesoporous Mater 82:257–292

    Article  CAS  Google Scholar 

  2. Barghi B, Karimzadeh R (2015) Kinetic modeling based on complex reaction theory for n-butane catalytic cracking over HZSM-5. Reac Kinet Mech Cat 116:507–522

    Article  CAS  Google Scholar 

  3. Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542

    Article  Google Scholar 

  4. van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev Sci Eng 45:297–319

    Article  Google Scholar 

  5. Wang Y, Li X, Ma H, Zhang H, Jiang Y, Wang H, Li Z, Wu J (2017) Effect of the desilication of H-ZSM-5 by alkali treatment on the catalytic performance in Fischer-Tropsch synthesis. Reac Kinet Mech Cat 120:775–790

    Article  CAS  Google Scholar 

  6. Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramírez J (2005) Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. Chem Eur J 11:4983–4994

    Article  CAS  Google Scholar 

  7. Verboekend D, Pérez-Ramírez J (2011) Design of hierarchical zeolite catalysts by desilication. Catal Sci Technol 1:879–890

    Article  CAS  Google Scholar 

  8. Mitchell S, Boltz M, Liu J, Pérez-Ramíre J (2017) Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catal Sci Technol 7:64–74

    Article  CAS  Google Scholar 

  9. Möller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42:3689–3707

    Article  Google Scholar 

  10. Jin L, Liu S, Xie T, Wang Y, Guo X, Hu H (2014) Synthesis of hierarchical ZSM-5 by cetyltrimethylammonium bromide assisted self-assembly of zeolite seeds and its catalytic performances. Reac Kinet Mech Cat 113:575–584

    Article  CAS  Google Scholar 

  11. Vu XH, Hunger M, Armbruster U, Martin A (2017) Influence of initial Si/Al ratios on the structural, acidic and catalytic properties of nanosized-ZSM-5/SBA-15 analog composites prepared from ZSM-5 precursors. J Porous Mater. https://doi.org/10.1007/s10934-017-0514-y

    Google Scholar 

  12. Vu XH, Armbruster U, Martin A (2016) Micro/mesoporous zeolitic composites: recent developments in synthesis and catalytic applications. Catalysts 6(12):183

    Article  Google Scholar 

  13. Ogura M, Shinomiya S, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal A 219:33–43

    Article  CAS  Google Scholar 

  14. Mochizuki H, Yokoi T, Imai H, Namba S, Kondo JN, Tatsumi T (2012) Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Appl Catal A 449:188–197

    Article  CAS  Google Scholar 

  15. Milina M, Mitchell S, Trinidad ZD, Verboekend D, Pérez-Ramírez J (2012) Decoupling porosity and compositional effects on desilicated ZSM-5 zeolites for optimal alkylation performance. Catal Sci Technol 2:759–766

    Article  CAS  Google Scholar 

  16. Tarach KA, Góra-Marek K, Martinez-Triguero J, Melián-Cabrera I (2017) Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catal Sci Technol 7:858–873

    Article  CAS  Google Scholar 

  17. Verboekend D, Mitchell S, Milina M, Groen JC, Pérez-Ramírez J (2011) Full Compositional flexibility in the preparation of mesoporous MFI zeolites by desilication. J Phys Chem C 115(29):14193–14203

    Article  CAS  Google Scholar 

  18. Vu XH, Schneider M, Bentrup U, Dang TT, Phan BMQ, Nguyen DA, Armbruster U, Martin A (2015) Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass. Ind Eng Chem Res 54:1773–1782

    Article  CAS  Google Scholar 

  19. García JR, Falco M, Sedran U (2016) Impact of the desilication treatment of Y zeolite on the catalytic cracking of bulky hydrocarbon molecules. Top Catal 59:268–277

    Article  Google Scholar 

  20. Vu XH, Bentrup U, Hunger M, Kraehnert R, Armbruster U, Martin A (2014) Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst. J Mater Sci 49:5676–5689

    Article  CAS  Google Scholar 

  21. Gil B, Mokrzycki Ł, Sulikowski B, Olejniczak Z, Walas S (2010) Desilication of ZSM-5 and ZSM-12 zeolites: impact on textural, acidic and catalytic properties. Catal Today 152:24–32

    Article  CAS  Google Scholar 

  22. Tarach KA, Martinez-Triguero J, Rey F, Góra-Marek K (2016) Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5. J Catal 339:256–269

    Article  CAS  Google Scholar 

  23. Morales-Pacheco P, Domínguez JM, Bucio L, Alvarez F, Sedran U, Falco M (2011) Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catal Today 166:25–38

    Article  CAS  Google Scholar 

  24. Aghakhani MS, Khodadadi AA, Najafi Sh, Mortazavi Y (2014) Enhanced triisopropylbenzene cracking and suppressed coking on tailored composite of Y-zeolite/amorphous silica-alumina catalyst. J Ind Eng Chem 20:3037–3045

    Article  CAS  Google Scholar 

  25. Al-Khattaf S, de Lasa H (2002) The role of diffusion in alkyl-benzenes catalytic cracking. Appl Catal A 226:139–153

    Article  CAS  Google Scholar 

  26. Al-Khattaf S, Atias JA, Jarosch K, de Lasa H (2002) Diffusion and catalytic cracking of 1,3,5 triisopropylbenzene in FCC catalysts. Chem Eng Sci 57:4909–4920

    Article  CAS  Google Scholar 

  27. Corma A, Wojciechowski BW (1982) The catalytic cracking of cumene. Catal Rev Sci Eng 24:1–65

    Article  CAS  Google Scholar 

  28. Zhao L, Shen B, Gao J, Xu C (2008) Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion. J Catal 258:228–234

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. M.-M. Pohl for recording TEM images; Dr. U. Bentrup for IR of adsorbed pyridine studies; Mr. R. Eckelt for N2-adsorption and desorption measurements; Dr. D.-L. Hoang is acknowledged for his help to carry out NH3-TPD. H. X. Vu thanks TDTU and LIKAT for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Hoan Vu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, X.H., Truong, T.T., Armbruster, U. et al. Influence of post-synthetic treatments of aluminum-rich ZSM-5 on the catalytic cracking of bulky hydrocarbons at low temperature. Reac Kinet Mech Cat 124, 437–452 (2018). https://doi.org/10.1007/s11144-017-1317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1317-5

Keywords

Navigation