Skip to main content
Log in

Pyrolysis of 1,2-dichloroethane over Ni–Cr catalyst at resistive heating

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The features of the catalytic pyrolysis of chlorohydrocarbons over resistive Ni–Cr alloy were studied using 1,2-dichloroethane as a model substrate. The heating of the catalyst was provided by a direct supply of current on nichrome spiral wire. Such parameters as the temperature of spiral wire (550–700 °C), hydrogen concentration (0–60 vol%) and preliminary activation conditions (acidic or oxidative-reductive treatment of wire surface) were varied in the study. The formation of dispersive nickel particles (up to 0.5 μm in size) catalyzing carbon fiber growth in accordance with the mechanism of carbide cycle was found to be a result of the carbon corrosion of the resistive Ni–Cr alloy. This process was shown to be conjugated with hydrodechlorination taking place within the studied conditions. The decomposition of chlorohydrocarbon goes preferably through the route of C–Cl bond hydrogenolysis when hydrogen is absent from the reaction mixture. Ethylene was found to be the main gas-phase product. The addition of hydrogen into the reaction mixture leads to the hydrogenation of ethylene with the formation of ethane and increases the amount of deposited carbon, which is subjected to partial hydrogenation with methane formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Olek M, Baron J, Zukowski W (2013) Chem Cent J 7:2

    Article  CAS  Google Scholar 

  2. Sakata Y, Bhaskar T, Uddin M, Muto A, Matsui T (2003) J Mater Cycles Waste Manag 5:113–124

    Article  CAS  Google Scholar 

  3. Krawczyk K, Ulejczyk B (2003) Plasma Chem Plasma Process 23:265–281

    Article  CAS  Google Scholar 

  4. Cheprasova NP, Bendetskaya ID, Isakov IG, Kolot TY, Gorbus OV (1991) Chem Pet Eng 27:660–662

    Article  Google Scholar 

  5. Kartashov LM, Treger YA, Flid MR, Koblov AA, Kalyuzhnaya TL (2009) Catal Ind 1:201–206

    Article  Google Scholar 

  6. Sung DJ, Moon DJ, Moon S, Kim J, Hong S-I (2005) Appl Catal A 292:130–137

    Article  CAS  Google Scholar 

  7. Chesnokov VV, Buyanov RA, Pakhomov NA (1997) RU Patent 2093228

  8. Mishakov IV, Buyanov RA, Zaikovskii VI, Strel’tsov IA, Vedyagin AA (2008) Kinet Catal 49:868–872

    Article  CAS  Google Scholar 

  9. Chesnokov VV, Buyanov RA, Afanas’ev AD (1979) Kinet Katal 20:477–480 (in Russian)

    CAS  Google Scholar 

  10. Chesnokov VV, Buyanov RA (2000) Russ Chem Rev 69:623–638

    Article  CAS  Google Scholar 

  11. Mishakov IV, Chesnokov VV, Buyanov RA, Chuvilin AL (2002) Dokl Phys Chem 386:207–210

    Article  CAS  Google Scholar 

  12. Mishakov IV, Buyanov RA, Chesnokov VV (2002) Katal Prom 386:33–39 (in Russian)

    Google Scholar 

  13. Mishakov IV, Bauman YI, Strel’tsov IA, Vedyagin AA, Buyanov RA (2011) RU Patent 2431525

  14. Bauman YI, Mishakov IV, Buyanov RA, Vedyagin AA, Volodin AM (2011) Kinet Catal 52:547–554

    Article  CAS  Google Scholar 

  15. Grabke HJ (2003) Mater Corros 54:736–746

    Article  CAS  Google Scholar 

  16. Mata D, Ferro M, Fernandes AJS, Amaral M, Oliveira FJ, Costa PMFJ, Silva RF (2010) Carbon 48:2839–2854

    Article  CAS  Google Scholar 

  17. Parthangal PM, Cavicchi RE, Zachariah MR (2007) Nanotechnology 18:185605

    Article  Google Scholar 

  18. Bauman YI, Kenzhin RM, Volodin AM, Mishakov IV, Vedyagin AA (2012) Chem Sustain Dev 20:119–127

    Google Scholar 

  19. Mishakov IV, Bauman YI, Korneev DV, Vedyagin AA (2013) Top Catal 56:1026–1032

    Article  CAS  Google Scholar 

  20. Bauman YI, Mishakov IV, Vedyagin AA, Dmitriev SV, Mel’gunov MS, Buyanov RA (2012) Catal Ind 4:261–266

    Article  Google Scholar 

  21. Sigaeva SS, Likholobov VA, Tsyrul’nikov PG (2013) Kinet Catal 54:199–206

    Article  CAS  Google Scholar 

  22. López LM, Salas O, Melo-Máximo L, Oseguera J, Lepienski CM, Soares P, Torres RD, Souza RM (2012) Appl Surf Sci 258:7306–7313

    Article  Google Scholar 

  23. Nishiyama Y, Otsuka N, Kudo T (2006) Corros Sci 48:2064–2083

    Article  CAS  Google Scholar 

  24. Bauman YI, Lysakova AS, Rudnev AV, Mishakov IV, Shubin YV, Vedyagin AA, Buyanov RA (2014) Nanotechnol 9:380–385

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Academy of Sciences and Federal Agency of Scientific Organizations (state-guaranteed order for BIC, Project Number 0303-2016-0014). Bauman Yuri and Sigaeva Svetlana are grateful to Russian Foundation for Basic Research (Grant 15-33-50724_mol-nr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauman, Y.I., Sigaeva, S.S., Mishakov, I.V. et al. Pyrolysis of 1,2-dichloroethane over Ni–Cr catalyst at resistive heating. Reac Kinet Mech Cat 120, 691–701 (2017). https://doi.org/10.1007/s11144-017-1138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1138-6

Keywords

Navigation