Skip to main content
Log in

Catalytic oxidation of ethanol in the gas phase over Pt/Rh and Pd catalysts: kinetic study in a spinning-basket flow reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic oxidation of ethanol in the gas phase over Pt/Rh and Pd monolithic catalysts was performed in a spinning basket flow reactor with the aim of studying kinetics. The reactor was operated under atmospheric pressure and reaction temperature was varied between 50 and 300 °C. The inlet concentrations of ethanol and oxygen were in the range of 0.0060–0.0240 μmol/mL and 0.10–10.0 % v/v, respectively. Gas chromatography was used to follow the progress of the oxidation. Carbon dioxide and small amounts of methane and acetaldehyde were the only products detected in ethanol oxidation over the catalysts tested. Various kinetic models were tested in the analysis of the experimental data obtained. The Marquardt–Levenberg method was used for the minimization of the objective function for the residual sum of squares. The model that takes into account the surface reaction between adsorbed reactants was found to yield the most successful fit for both catalysts. According to this model, the activation energy of ethanol catalytic oxidation over Pt/Rh and Pd is 7903 and 6571 cal mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Walter A, Rosillo-Calle F, Dolzan P, Piacente E, da Cunha KB (2008) Biomass Bioenerg 32:730–748

    Article  Google Scholar 

  2. Powers SE, Hunt CS, Heermann SE, Corseuil HX, Rice D, Alvarez PJ (2001) Critical Rev Environ Sci Technol 31:79–123

    Article  CAS  Google Scholar 

  3. Kadam KL (2002) Energy Policy 30:371–384

    Article  Google Scholar 

  4. Gibson J (2004) Eur Chem News 81:10

    Google Scholar 

  5. Poulopoulos SG, Samaras DP, Philippopoulos CJ (2001) Atmos Environ 35:4399–4406

    Article  CAS  Google Scholar 

  6. Ismagilov ZR, Dobrynkin NM, Popovskii VV (1979) React Kinet Catal Lett 10:55–59

    Article  CAS  Google Scholar 

  7. Kieffer R, Hindermann JP, El Bacha R, Kiennemann A, Deluzarche A (1982) React Kinet Catal Lett 21:17–21

    Article  CAS  Google Scholar 

  8. McCabe RW, Mitchell PJ (1983) Ind Eng Chem Prod Res Dev 22:212–217

    Article  CAS  Google Scholar 

  9. McCabe RW, Mitchell PJ (1984) Ind Eng Chem Prod Res Dev 23:196–202

    Article  CAS  Google Scholar 

  10. Nagal M, Gonzalez RD (1985) Ind Eng Chem Prod Res Dev 24:525–531

    Google Scholar 

  11. Barresi AA, Baldi G (1993) Chem Eng Comm 123:17–29

    Article  CAS  Google Scholar 

  12. Rajesh H, Ozkan US (1993) Ind Eng Chem Res 32:1622–1630

    Article  CAS  Google Scholar 

  13. Pettersson LJ, Jaras SG, Andersson S, Marsh P (1995). In: Frennet A, Bastin JM (eds) Catalysis and automotive pollution control III, Proceedings of the Third international symposium (CAPoC3), Brussels, Belgium, April 20–22, 1994, Elsevier, Amsterdam

  14. Silva AM, Corro G, Marecot P, Barbier (1998)In: Kruse N, Frennet A, Bastin JM (eds) Catalysis and automotive pollution control IV, Proceedings of the Fourth International Symposium (CAPoC4), Brussels, Belgium, April 9–11, 1997, Elsevier: Amsterdam

  15. Zhou L, Akgerman A (1995) Ind Eng Chem Res 34:1588–1595

    Article  CAS  Google Scholar 

  16. Petkovic LM, Rashkeev SN, Ginosar DM (2009) Catal Today 147:107–114

    Article  CAS  Google Scholar 

  17. Rintramee K, Föttinger K, Rupprechter G, Wittayakun J (2012) Appl Catal B: Environ 115–116:225–235

    Article  Google Scholar 

  18. Li Z, Wang J, He K, An X, Huang W, Xie K (2011) J Nat Gas Chem 20:167–172

    Article  CAS  Google Scholar 

  19. Poulopoulos SG, Grigoropoulou HP, Philippopoulos CJ (2002) Catal Lett 78:291–296

    Article  CAS  Google Scholar 

  20. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York

    Google Scholar 

  21. Morales MR, Barbero BP (2008) Cadu´s LE. Fuel 87:1177–1186

    Article  CAS  Google Scholar 

  22. Peluso MA, Pronsato E, Sambeth JE, Thomas HJ, Busca G (2008) Appl Catal B: Environ 78:73–79

    Article  CAS  Google Scholar 

  23. Cao H, Song W, Gong M, Wang J, Yan S, Liu Z, Chen Y (2009) J Nat Gas Chem 18:83–87

    Article  CAS  Google Scholar 

  24. Chuang KT, Zhou B, Tong S (1994) Ind Eng Chem Res 33:1680–1686

    Article  CAS  Google Scholar 

  25. Shailesh D, Abraham M (1997) Ind Eng Chem Res 36:1979–1988

    Article  Google Scholar 

  26. Bobaru SC (2006) High pressure STM studies of oxidation catalysis, Thesis, Leiden University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros G. Poulopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poulopoulos, S.G. Catalytic oxidation of ethanol in the gas phase over Pt/Rh and Pd catalysts: kinetic study in a spinning-basket flow reactor. Reac Kinet Mech Cat 117, 487–501 (2016). https://doi.org/10.1007/s11144-015-0954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0954-9

Keywords

Navigation