Skip to main content
Log in

Hydroamination reactions of dialkyl esters of 2-buthenedioic acids with polyetheramines under catalytic and non-catalytic conditions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The addition reaction of maleate esters and Jeffamine polyetheramines under mild conditions was fairly rapid in the initial period, then it became extremely slow. In the case of the Jeffamine D-230-dibutyl maleate reactant pair, 0.70 conversion was already achieved after 2 h reaction time, but after 1 day, this value was only 0.83. Product inhibition was excluded. Infrared spectroscopic measurements indicated that an amine catalyzed fast isomerization of the maleates to fumarates can be responsible for the unusual slowdown. While heterogeneous catalysts (Cu-, Zn- and Ni-oxides supported by H-beta zeolite, sulfated zirconia, Al2O3, SiO2) had no effect on the reaction rate, the presence of organocatalysts (3,5-dimethylpyrazole, imidazole, quinuclidine, 1,4-diazabicyclo[2.2.2]octane, 1,1′,3,3′-tetramethylthiourea, etc.) enhanced the activity in the low conversion regime. Azole containing reaction mixtures showed about 10 % larger conversion than the catalyst-free one. However, at high conversions (≥0.95), which could be reached after a week the advantage of the catalyst decreased significantly. The effect of organocatalyst can be explained by the inhibition of the maleate-fumarate isomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M (2008) Chem Rev 108:3795–3892

    Article  Google Scholar 

  2. Carter AB, Harris N, Kippax JW, Rathmell C, Reason AJ, Scarlett J, Sharif M, Turner K (1986) EP0223814A1, 18 Dec 1986

  3. Baer M (1949) US Patent 2,492,086, 20 Dec 1949

  4. Rehberg CE, Dietz TJ, Meiss PE, Dixon MB (1952) Ind Eng Chem 44:2191–2195

    Article  CAS  Google Scholar 

  5. Kurek G, Pedain J, Halpaap R, Sonntag M (1998) US patent 5,821,326, 13 Oct 1998

  6. Speranza GP, Lin JJ (1994) EP0435497 B1, 16 Feb 1994

  7. Senkfor H, Hockswender TR, Barancyk SV, Martz JT, Zawacky SR, US20080145696, 19 July 2008; US 20110195225, 11 Aug 2011; US 7968212; 28 June 2011

  8. Baidussi W, Gutman D (2007) CA2612578 A1, 27 Jan 2011

  9. Le DP, Smagghe GJ (1999) EP 0938843 A1, 1 Sept 1999

  10. Speranza GP, Lin JJ, Cuscurida M (1993) EP0322089 B1, 21 April 1993

  11. Barancyk SV, Hockswender TR, Furar J, Martz JT, Senkfor H (2011) US7968198 B2, 28 June 2011

  12. Senkfor H, Greigger PP, Hockswender TR, Bratys DM (2011) US7928160B2, 19 April 2011

  13. Klein DH, Marche CP (1996) WO1996015172 A1, 23 May 1996

  14. Burton BL (2013) US20130090450 A1, 11 April 2013

  15. Silver JA, Roberts CC, Jackson C (2014) WO2014004771 A1, 3 Jan 2014

  16. Gasper K, Kondos C (2006) US20060079636, 13 April 2006

  17. Penzien J, Su RQ, Müller TE (2002) J Mol Catal A: Chem 182–183:489–498

    Article  Google Scholar 

  18. Vakulya B, Varga S, Csámpai A, Soós T (2005) Org Lett 7:1967–1969

    Article  CAS  Google Scholar 

  19. Connon SJ (2006) Chem Eur J 12:5418–5427

    Article  Google Scholar 

  20. Sibi MP, Itoh K (2007) J Am Chem Soc 129:8064–8065

    Article  CAS  Google Scholar 

  21. Tada M, Shimamoto M, Sasaki T, Iwasawa Y (2004) Chem Commun 22:2562–2563

    Article  Google Scholar 

  22. Mizuno N, Tabata M, Uematsu T, Iwamoto M (1994) J Catal 146:249–256

    Article  CAS  Google Scholar 

  23. Motokura K, Nakagiri N, Mori K, Mizugaki T, Ebitani K, Jitsukawa K, Kaneda K (2006) Org Lett 8:4617–4620

    Article  CAS  Google Scholar 

  24. Penzien J, Haeßner C, Jentys A, Köhler K, Müller TE, Lercher JA (2004) J Catal 221:302–312

    Article  CAS  Google Scholar 

  25. Jimenez O, Müller TE, Schwieger W, Lercher JA (2006) J Catal 239:42–56

    Article  CAS  Google Scholar 

  26. Shanbhag GV, Halligudi SB (2004) J Mol Catal A: Chem 222:223–228

    Article  CAS  Google Scholar 

  27. Penzien J, Müller TE, Lercher JA (2001) Microporous Mesoporous Mater 48:285–291

    Article  CAS  Google Scholar 

  28. Turunen L (1962) I&EC Product Research and Development 1:40–45

    Article  CAS  Google Scholar 

  29. Schlander JH, Turek T (1999) Ind Eng Chem Res 38:1264–1270

    Article  CAS  Google Scholar 

  30. Miller W, Teeter H (1959) J Org Chem 24:1816–1818

    Article  CAS  Google Scholar 

  31. Heindel ND (1970) J Org Chem 35:3138–3140

    Article  CAS  Google Scholar 

  32. Meheux PA, Ibbotson A, Wells PB (1991) J Catal 128:387–396

    Article  CAS  Google Scholar 

  33. Siggia S, Hanna JG, Kervenski IR (1950) Anal Chem 22:1295–1297

    Article  CAS  Google Scholar 

  34. Krantz GS (1977) Lipkowitz. J Am Chem Soc 99:4156–4159

    Article  CAS  Google Scholar 

  35. Shin JS, Kim BG, Shin DH (2001) Enzyme Microb Tech 29:232–239

    Article  CAS  Google Scholar 

  36. Vrachnou-Astra E, Sakellaridis P, Katakis D (1970) J Am Chem Soc 92:3936–3942

    Article  CAS  Google Scholar 

  37. Feuer SS, Bocksthaler TE, Brown CA, Rosenthal I (1954) Ind Eng Chem 46:1643–1645

    Article  CAS  Google Scholar 

  38. Williams RB (1942) J Am Chem Soc 64:1395–1404

    Article  CAS  Google Scholar 

  39. Parker EE (1966) Ind Eng Chem 58:53–58

    Article  CAS  Google Scholar 

  40. Lewis FM, Mayo FR (1984) J Am Chem Soc 70:1533–1536

    Article  Google Scholar 

  41. Macoas EMS, Fausto R, Lundell J, Pettersson M, Khriachtchev L, Räsänen M (2001) J Phys Chem A 105:3922

    Article  CAS  Google Scholar 

  42. Ozaki K (1941) J Am Chem Soc 63:2681

    Article  Google Scholar 

  43. Fan YL, Pollart DF (1968) J Org Chem 33:4372

    Article  CAS  Google Scholar 

  44. Karaman R (2011) Tetrahedron Lett 52:6288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Dr. Benedek Vakulya for providing organocatalyst (thiourea-CN) and Dr. Magdolna Mihályi for providing H-beta zeolite as a gift. The help in the infrared analysis by Prof. Enikő Földes is greatly acknowledged. The ESI–MS measurement by Dr. Ágnes Gömöry (Core Technologies Centre, RCNS, HAS) and the NMR measurements by Dr. Orsolya Egyed (Core Technologies Centre, RCNS, HAS) are also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Tompos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tálas, E., Szíjjártó, G.P. & Tompos, A. Hydroamination reactions of dialkyl esters of 2-buthenedioic acids with polyetheramines under catalytic and non-catalytic conditions. Reac Kinet Mech Cat 115, 431–447 (2015). https://doi.org/10.1007/s11144-015-0851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0851-2

Keywords

Navigation