Skip to main content
Log in

Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Supported Pt catalysts are synthesized, characterized and are used in the liquid phase air oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). Under the optimum reaction conditions of a stepwise increase in the reaction temperature (75 and 140 °C for 12 h each), we achieved as high as 96 % FDCA yield in presence of 1 bar oxygen pressure over Pt/γ-Al2O3. It is shown that as the oxygen pressure increases (1–10 bar), the FDCA yields decrease, since at higher partial pressure of oxygen, overoxidation reactions of substrate and product(s) are possible. It is interesting to note that even with air as an oxidant, we obtained similar yields of FDCA as that with oxygen. Moreover, the effects of base (weak or strong), its concentration (equimolar or excess) were studied in detail. It is important to increase the reaction temperature in a stepwise manner to achieve higher yields of FDCA since at higher temperatures HMF undergoes self-degradation and thus the yields of FDCA decrease. The self-degradation of HMF is also proved by undertaking the reaction under nitrogen environment. The study on the effect of substrate-to-catalyst ratio is done to improve up on the economics of overall process. The effect of supports (reducible and non-reducible) and their oxygen storage capacity is discussed and is proposed to be one of the factors to change the course of reaction. Furthermore, we have shown that FDCA formed in the reaction can be successfully isolated (91 %, isolated yield) in the pure form and its purity is confirmed by NMR, melting point, and elemental analysis. The catalysts were characterized with X-ray powder diffraction, transmission electron microscopy and inductively coupled plasma-optical emission spectroscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maki-Arvela P, Holmbom B, Salmi T, Murzin DY (2007) Catal Rev 49:197

    Article  Google Scholar 

  2. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  3. Bozell JJ, Petersen GR (2010) Green Chem 12:539

    Article  CAS  Google Scholar 

  4. Sillion B (1999) High Perform Poly 11:417

    Article  CAS  Google Scholar 

  5. Roman-Leshkov Y, Barret CJ, Liu ZY, Dumesic JA (2007) Nature 447:982

    Article  CAS  Google Scholar 

  6. Chheda JN, Roman-Leshkov Y, Dumesic JA (2007) Green Chem 9:342

    Article  CAS  Google Scholar 

  7. Yang F, Liu Q, Bai X, Du Y (2011) Bioresour Technol 102:3424

    Article  CAS  Google Scholar 

  8. Tong X, Ma Y, Li Y (2010) Appl Catal 385:1

    Article  CAS  Google Scholar 

  9. Werpy T, Petersen G, 2004 Top Value Added Chemicals From Biomass, Available electronically at http://wwwl.eere.energy.gov/biomass/pdfs/35523.pdf

  10. Gandini A, Silvestre AJD, Neto CP, Sousa AF, Gomes M (2008) Polym J Sci 47:295

    Article  Google Scholar 

  11. Benecke HP, Kawczak AW, Garbark DB, (2008) US 207847

  12. King JL, Kawczak AW, Benecke HP, Mitchell KP, Clingerman M.C, (2008) US 81883

  13. Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11

    Article  CAS  Google Scholar 

  14. Verdeguer P, Merat N, Gaset A (1993) J Mol Catal 85:327

    Article  CAS  Google Scholar 

  15. Yuan JP, Chen F (1998) Food Chem 64:42

    Google Scholar 

  16. Besson M, Gallezot P (2000) Catal Today 57:127

    Article  CAS  Google Scholar 

  17. Kluytmans JHJ, Markuse AP, Kuster BFM, Marin GB, Schouten JC (2000) Catal Today 57:143

    Article  CAS  Google Scholar 

  18. Mallat T, Baiker A (1994) Catal Today 19:247

    Article  CAS  Google Scholar 

  19. Fittig R, Heinzelmann H (1876) Chem Ber 9:1198

    Google Scholar 

  20. Toshinari M, Hirokazu K, Takenobu K, Hirohide M, (2007) US 232815

  21. Miura T, Kakinuma H, Kawano T, (2008) US 7411078B2

  22. Partenheimer W, Grushin VV (2001) Adv Synth Catal 343:102

    Article  CAS  Google Scholar 

  23. Liga MA, Hallen T, Hu J, White JF, Gray MJ, (2008) PUB. No: US 2008/0103318A1

  24. Ribeiro ML, Schuchardt U (2003) Catal Commun 4:83

    Article  CAS  Google Scholar 

  25. Vinke P, Poel WVD, Bekkum HV (1991) Stud Surf Sci Catal 59:385

    Article  CAS  Google Scholar 

  26. Vinke P, Dam HEV, Bekkum HV, Centi G (1990) New developments in selective oxidation. Elsevier, New York 147

    Google Scholar 

  27. Kroger M, Prube U, Vorlop KD (2000) Top Catal 13:237

    Article  CAS  Google Scholar 

  28. Casanova O, Iborra S, Corma A (2009) ChemSusChem 2:1138

    Article  CAS  Google Scholar 

  29. Gorbanev YY, Klitgaard SK, Woodley JM, Christensen CH, Riisager A (2009) ChemSusChem 2:672

    Article  CAS  Google Scholar 

  30. Gupta NK, Nishimura S, Takagakib A, Ebitani K (2011) Green Chem 13:824

    Article  CAS  Google Scholar 

  31. Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) ChemSusChem 1:75

    Article  CAS  Google Scholar 

  32. Xia BY, Wang JN, Wang XX (2009) J Phys Chem C 113:18115

    Article  CAS  Google Scholar 

  33. Grace AN, Pandian K (2007) J Phys Chem Solids 68:2278

    Article  Google Scholar 

  34. Davis SE, Houkb LR, Tamargoa EC, Datyeb AK, Davis RJ (2011) Catal Today 160:55

    Article  CAS  Google Scholar 

  35. Baranenko VI, Falkovskii LN, Kirov VS, Kurnyk LN, Musienko AN, Piontkovskii AI (1990) Atomnayannergiya 68:291

    CAS  Google Scholar 

  36. Ishida T, Kinoshita N, Okatsu H, Akita T, Takei T, Haruta M (2008) Angew Chem Int Ed 47:9265

    Article  CAS  Google Scholar 

  37. Kaspar J, Fornasiero P, Graniani M (1999) Catal Today 50:285

    Article  CAS  Google Scholar 

  38. Yao MH, Baird RJ, Kunz FW, Hoost TE (1997) J Catal 166:67

    Article  CAS  Google Scholar 

  39. Passos FB, Oliveira ER, Rego CEL, Mattos LV, Noronha FB (2003) Fuel Chem Div 48:325

    CAS  Google Scholar 

  40. Reddy BM, Khan A (2005) Catal Surv Asia 9:155

    Article  CAS  Google Scholar 

  41. Despande PA, Madras G (2010) AIChE J 56:2662

    Article  Google Scholar 

  42. Siel’niko VV, Tolkachev NN, Stakheev AY (2005) Kinet Catal 46:550

    Article  Google Scholar 

  43. Mattos LV, Noronha FB (2005) J Power Source 145:10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. D. Srinivas for valuable suggestions and the Council of Scientific and Industrial Research (CSIR) Delhi, for a research fellowship to RS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paresh L. Dhepe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, R., Dhepe, P.L. Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts. Reac Kinet Mech Cat 112, 173–187 (2014). https://doi.org/10.1007/s11144-014-0689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0689-z

Keywords

Navigation