Skip to main content
Log in

Au/γ-Al2O3 catalysts for glycerol oxidation: the effect of support acidity and gold particle size

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, the effect of gold particle size and surface acidity were investigated in the partial oxidation of glycerol, particularly towards the formation of lactic acid over gold catalysts supported on acidified γ-Al2O3. Alumina-supported gold catalysts were prepared at an optimal pH of approximately 7.0 and tested for the partial oxidation of glycerol. To acidify the catalyst samples, MoO3 or WO3 monolayer was introduced onto the alumina support before gold was deposited. It was observed that under the reaction conditions employed, small gold nanoparticles (ca 4 nm) showed a tendency towards zeroth order kinetics for the oxidation of glycerol. However, bigger gold nanoparticles (ca 20 nm) were inclined towards first order kinetics. It was also established that the nature of the reducing agent affected the size and morphology of the supported gold nanoparticles on γ-alumina and consequently the product spectrum. Catalysts with smaller gold nanoparticles formed predominantly C-3 compounds (glyceric, tartronic and lactic acids) while those with bigger gold nanoparticles formed predominantly C-1 compound (formic acid). Increased Lewis acidity was also found to play a positive role in the formation of lactic acid over γ-alumina-supported gold catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murugesan A, Umarani C, Subramanian R, Nedunchezhian N (2009) Renew Sustain Energy Rev 13:653–662

    Article  CAS  Google Scholar 

  2. Pagliaro M, Rossi M (2008) The future of glycerol: new uses of a versatile raw material. Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Besson M, Gallezot P (2000) Catal Today 57(1–2):127–141

    Article  CAS  Google Scholar 

  4. Carretin S, McMorn P, Johnson P, Griffin K, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1329–1336

    Article  Google Scholar 

  5. Carretin S, McMorn P, Johnson P, Griffin K, Kiely C, Attard GA, Hutchings GJ (2004) Top Catal 27(1–4):131–136

    Article  Google Scholar 

  6. Porta F, Prati L (2004) J Catal 224:397–403

    Article  CAS  Google Scholar 

  7. Pollington SD, Enache DI, Landon P, Meenakshisundaram S, Dimitratos N, Wagland A, Hutchings GJ, Stitt EH (2009) Catal Today 145:69

    Article  Google Scholar 

  8. Ketchie WC, Fang Y, Wong MS, Murayama M, Davies RJ (2007) J Catal 250:94

    Article  CAS  Google Scholar 

  9. Chornaja S, Dubencov K, Kampars V, Stepanova O, Zhizhkun S, Serga V, Kulikova L (2013) Reac Kinet Mech Catal. doi:10.1007/s11144-012-0516-3

    Google Scholar 

  10. Demirel S, Lucas M, Warna J, Salmi T, Murzin D, Claus P (2007) Top Catal 44(1–2):299–305

    Article  CAS  Google Scholar 

  11. Okamoto Y, Arima Y, Hagio M, Nakai K, Umeno S, Akai Y, Uchikawa K, Inamura K, Ushikubo T, Katada N, Hasegawa S, Yoshida H, Tanaka T, Isoda T, Mochida I, Segawa K, Nishijima A, Yamada M, Matsumoto H, Niwa M, Uchijima T (1998) Appl Catal A Gen 170:329–342

    Article  CAS  Google Scholar 

  12. Okamoto Y, Arima Y, Hagio M, Nakai K, Umeno S, Akai Y, Uchikawa K, Inamura K, Ushikubo T, Katada N, Hasegawa S, Yoshida H, Tanaka T, Isoda T, Mochida I, Segawa K, Nishijima A, Yamada M, Matsumoto H, Niwa M, Uchijima T (1998) Appl Catal A Gen 170:343–358

    Article  CAS  Google Scholar 

  13. Okamoto Y, Arima Y, Hagio M, Nakai K, Umeno S, Akai Y, Uchikawa K, Inamura K, Ushikubo T, Katada N, Hasegawa S, Yoshida H, Tanaka T, Isoda T, Mochida I, Segawa K, Nishijima A, Yamada M, Matsumoto H, Niwa M, Uchijima T (1998) Appl Catal A Gen 170:359–379

    Article  CAS  Google Scholar 

  14. Okamoto Y, Arima Y, Hagio M, Nakai K, Umeno S, Akai Y, Uchikawa K, Inamura K, Ushikubo T, Katada N, Hasegawa S, Yoshida H, Tanaka T, Isoda T, Mochida I, Segawa K, Nishijima A, Yamada M, Matsumoto H, Niwa M, Uchijima T (1998) Appl Catal A 170:315–328

    Article  CAS  Google Scholar 

  15. Belohlav Z, Zamostny P, Kluson P, Volf J (1997) Can J Chem Eng 75:735–742

    Article  CAS  Google Scholar 

  16. Zamostny P, Belohlav Z (1999) Comput Chem 23:479–485

    Article  CAS  Google Scholar 

  17. Shang C, Liu Z-P (2011) J Am Chem Soc 133:9938–9947

    Article  CAS  Google Scholar 

  18. Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74–78

    Article  CAS  Google Scholar 

  19. Santen RAV, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley-VCH, Cambridge

    Book  Google Scholar 

  20. Zhou B, Hermanens S, Sormojai GA (2004) Nanotechnology in catalysis, vol 1–2. Springer, Berlin

    Book  Google Scholar 

  21. Santen RAV, Gelten RJ (1997) An introduction to molecular heterogeneous catalysis. In: Catlow CRA, Cheetham A (eds) New trends in materials chemistry. Kluwer Academic Publishers, Dordrecht, pp 345–362

    Chapter  Google Scholar 

  22. Niemantsverdriet JW (1995) Appl Phys A 61:503–509

    Article  Google Scholar 

  23. Gong J, Ma X, Wang S, Yang X, Wang G, Wen S (2004) Kinet Catal Lett 83(1):113

    Article  CAS  Google Scholar 

  24. Kabyemela BM, Adschiri T, Malaluan R, Arai K (1997) Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water. Ind Eng Chem Res 36:2025–2030

    Article  CAS  Google Scholar 

  25. Rasrendra CB, Fachri BA, Makertihartha IGBN, Adisasmito S, Heers HJ (2011) ChemSusChem 4:768–777

    Article  CAS  Google Scholar 

  26. Osmundsen CM, Holm MS, Dalh S, Taarning E (2012) Proc R Soc A. doi:10.1098/rspa.2012.0047

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mintek and Anglo-gold Ashanti for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thabang Ntho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntho, T., Aluha, J., Gqogqa, P. et al. Au/γ-Al2O3 catalysts for glycerol oxidation: the effect of support acidity and gold particle size. Reac Kinet Mech Cat 109, 133–148 (2013). https://doi.org/10.1007/s11144-013-0542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0542-9

Keywords

Navigation