Skip to main content
Log in

Kinetics and mechanism of the hydrogenation of m-dinitrobenzene to m-phenylenediamine

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The hydrogenation of m-dinitrobenzene to m-phenylenediamine was carried out as a model hydrogenation reaction of importance to the pharmaceutical and fine chemicals industries with the aim of investigating the kinetics of the reaction. The effect of different conditions: hydrogen pressure, m-dinitrobenzene concentration, reaction temperature, and weight of catalyst on the conversion of m-dinitrobenzene and the yield of m-phenylenediamine were studied using Pt/TiO2 catalyst. During the kinetic study, the intermediate m-nitroaniline was detected. Therefore, the overall reaction was treated as consecutive reactions: first the reduction of m-dinitrobenzene to m-nitroaniline and then, the reduction of m-nitroaniline to m-phenylenediamine. The apparent activation energies of the reaction were determined in each step, to be 33.4 ± 0.4 and 39.8 ± 0.6 kJ/mol. Those results indicated that the hydrogenation of m-nitroaniline toward m-phenylenediamine is the rate determining step in the hydrogenation of m-dinitrobenzene. Two rate equations assuming Langmuir–Hinshelwood mechanism provided the best fit to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dovell F, Ferguson W, Greenfield H (1970) Ind Eng Chem Prod Res Dev 9:224–229

    Article  CAS  Google Scholar 

  2. Downing R, Kunkeler P, Van Bekkum H (1997) Catal Today 37:121–137

    Article  CAS  Google Scholar 

  3. Liu Y, Wei Z, Zhang J, Yan W (2007) React Kinet Catal Lett 92:121–127

    Article  CAS  Google Scholar 

  4. Chen J, Zhang J, Zhanga J (2008) React Kinet Catal Lett 93:359–366

    Article  CAS  Google Scholar 

  5. Kratky V, Kralik M, Mecarova M, Stolcova M, Zalibera L, Hronec M (2002) Appl Catal A Gen 235:225–231

    Article  CAS  Google Scholar 

  6. Barrows S, Cramer C, Truhlar D, Elovitz M, Weber E (1996) Environ Sci Technol 30:3028–3038

    Article  CAS  Google Scholar 

  7. Freifelder M (1971) Practical catalytic hydrogenation. Wiley, New York

    Google Scholar 

  8. Rylander P (1979) Catalytic hydrogenation in organic syntheses. Academic Press, New York

    Google Scholar 

  9. Telkar M, Nadgeri J, Rode C, Chaudhari R (2005) Appl Catal A Gen 295:23–30

    Article  CAS  Google Scholar 

  10. Yingxin L, Jixiang C, Jiyan Z (2007) Chin J Chem Eng 15:63–67

    Article  Google Scholar 

  11. Zhao L, Chen J, Zhang J (2006) J Mol Catal A Chem 246:140–145

    Article  CAS  Google Scholar 

  12. Liu Y, Zuojun W, Zhang J (2006) Korean J Chem Eng 23:902–907

    Article  CAS  Google Scholar 

  13. Yu Z, Liao S, Xu Y, Yang B (1997) J Mol Catal A Chem 120:247–255

    Article  CAS  Google Scholar 

  14. Zhao S, Liang H, Zhou Y (2007) Catal Commun 8:1305–1309

    Article  CAS  Google Scholar 

  15. Kluson P, Cerveny L (1995) Appl Catal A Gen 128:13–31

    Article  CAS  Google Scholar 

  16. Neri G, Musolino M, Milone C, Visco A, Mario AD (1995) J Mol Catal A Chem 95:235–241

    Article  CAS  Google Scholar 

  17. Andersson B, Hatziantoniou V, Schöön N (1986) Ind Eng Chem Proc Des 25:964

    Article  Google Scholar 

  18. Cardenas F, Gomez S, Idriss H, Keane M (2009) J Catal 268:223–234

    Article  Google Scholar 

  19. Veena L, Chandalia S (2001) Org Proc Res Dev 5:263–266

    Article  Google Scholar 

  20. Rojas H, Reyes P (2006) Reac Kinet Mech Cat 88:363–369

    Article  Google Scholar 

  21. Weisz P, Prater C (1954) Adv Catal 6:143–196

    Article  CAS  Google Scholar 

  22. Rojas H, Borda G, Reyes P, Martinez J, Valencia J, Fierro JLG (2008) Catal Today 133:699–705

    Article  Google Scholar 

  23. Hinz A, Larsson P, Skårman B, Andersson A (2001) Appl Catal B Environ 34:161–178

    Article  CAS  Google Scholar 

  24. Lin B, Wang R, Yu X, Lin J, Xie F, Wei K (2008) Catal Lett 124:178–184

    Article  CAS  Google Scholar 

  25. Shimizu K, Miyamoto Y, Satsuma A (2010) J Catal 270:86–94

    Article  CAS  Google Scholar 

  26. Rojas H, Borda G, Reyes P, Castañeda J, Fierro JLG (2008) J Chil Chem Soc 53:1393–1397

    Article  Google Scholar 

  27. Reyes P, Rojas H, Pecchi G, Fierro JLG (2002) J Mol Catal A Chem 179:293–299

    Article  CAS  Google Scholar 

  28. Reyes P, Rojas H, Fierro JLG (2003) J Mol Catal A Chem 203:203–211

    Article  CAS  Google Scholar 

  29. Reyes P, Oportus M, Pechi G, Frety R, Moraweck B (1996) Catal Lett 37:193–197

    Article  CAS  Google Scholar 

  30. Pérez R, Gómez A, Arenas J, Rojas S, Mariscal R, Fierro JLG, Diaz G (2005) Catal Today 107:149–156

    Article  Google Scholar 

  31. Santra P, Priyanka S (2003) J Mol Catal A Chem 197:37–50

    Article  CAS  Google Scholar 

  32. Alzaydien A (2004) J Appl Sci 4:575–578

    Article  Google Scholar 

  33. Shringarpure P, Patel A (2011) Reac Kinet Mech Cat 103:165–180

    Article  CAS  Google Scholar 

  34. Tjahjono M, Huiheng C, Widjaja E, Sa-ei K, Garland M (2009) Talanta 79:856–862

    Article  CAS  Google Scholar 

  35. Udayakumar V, Alexander S, Gayathri V, Viswanathan B (2011) Reac Kinet Mech Cat 103:341–352

    Article  CAS  Google Scholar 

  36. Serna P, Concepción P, Corma A (2009) J Catal 265:19–25

    Article  CAS  Google Scholar 

  37. Neri G, Musolino M, Bonaccorsi DA, Mercadante L, Galvagno S (1997) Ind Eng Chem Res 36:3619–3624

    Article  CAS  Google Scholar 

  38. Aramendía M, Borau V, Gómez J, Herrera A, Jimenez C, Marinas J (1993) J Catal 140:335–343

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge to DIN-UPTC for financial support (SGI 683). RECIEND COMPANY-Colombia, by donation of titania P-25 Lot. 41680882698.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Rojas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, H., Borda, G., Brijaldo, M. et al. Kinetics and mechanism of the hydrogenation of m-dinitrobenzene to m-phenylenediamine. Reac Kinet Mech Cat 105, 271–284 (2012). https://doi.org/10.1007/s11144-011-0380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0380-6

Keywords

Navigation