Skip to main content
Log in

Testing the performance of density functionals for the calculation of energetic properties of complex-forming radical-molecule reactions

  • Published:
Reaction Kinetics and Catalysis Letters Aims and scope Submit manuscript

Abstract

The performance of some popular and some more recent density functional methods for the calculation of energies of stationary points on the potential surfaces of radical-molecule reactions was examined. The functionals studied are B3-LYP, BH&H, BH&H-LYP, MPW1K, MPWB1K, TPSS, TPSSh, BB1K, M05 and M05-2X, in conjunction with nine different AO basis sets. The reaction energies, barrier heights and the relative energies of the pre-and post-reaction complexes were compared with those obtained at the CCSD(T)/CBS limit for the reactions of OH radicals with HOOH and CH3OOH. Very poor barrier heights are provided by the B3-LYP, TPSS and TPSSh functionals. The best overall performance was obtained with the BB1K, MPW1K and MPWB1K functionals. In these reactions all of the studied functionals provide converged results only if they are used with large basis sets like aug-cc-pVTZ and def2-TZVP. The data show that before relying on a functional for a specific reaction, it is desirable to make some test calculations on the performance. The same functional can predict some relative energies very well and some others very poorly even in systems including chemically similar reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Finlayson-Pitts, J.N. Pitts, Jr.: Chemistry of the Upper and Lower Troposphere: Theory, Experiments, and Applications, Academic Press, Sand Diego 1999.

    Google Scholar 

  2. M.J. Pilling (Ed.) Low Temperature Combustion and Autoignition: Comprehensive Chemical Kinetics, Vol. 35, Elsevier, New York, 1995.

    Google Scholar 

  3. W.C. Gardiner (Ed.), Combustion Chemistry, Springer-Verlag, New York 1984.

    Google Scholar 

  4. Y.J. Bomble, J. Vazquez, M. Kallay, C. Michauk, P.G. Szalay, A.G. Csaszar, J. Gauss, J. F. Stanton: J. Chem. Phys., 125, 064108 (2006).

    Google Scholar 

  5. B.B. Laird, R.B. Ross, T. Ziegler (Eds): Chemical Applications of Density-Functional Theory, American Chemical Society Symposium Series, 629, Washington (1996).

  6. J. Baker, M. Muir, J. Andzelm: J. Chem. Phys., 102, 2064 (1995).

    Google Scholar 

  7. S. Skokov, R.A. Wheeler: Chem. Phys. Lett., 271, 251 (1997).

    Article  CAS  Google Scholar 

  8. B.G. Johnson, C.A. Gonzales, P.M.W. Gill, J.A. Pople: Chem. Phys. Lett., 221, 101(1994).

    Article  Google Scholar 

  9. E.I. Izgorodina, M.L. Coote, L. Radom: J. Phys. Chem. A, 109, 7558 (2005).

    Article  CAS  Google Scholar 

  10. S. Grimme, M. Steinmetz, M. Korth: J. Org. Chem., 72, 2118 (2007).

    Article  CAS  Google Scholar 

  11. S. Grimme, M. Steinmetz, M. Korth: J. Chem. Theory Comput., 3, 42 (2007).

    Article  CAS  Google Scholar 

  12. M.D. Wodrich, C. Corminboeuf, P.V.R. Schleyer: Org. Lett., 8, 3631 (2006).

    Article  CAS  Google Scholar 

  13. M.D. Wodrich, C. Corminboeuf, P.R. Schreiner, A.A. Fokin, P.V.R. Schleyer: Org. Lett., 9, 1851 (2007).

    Article  CAS  Google Scholar 

  14. T.A. Rokob, A. Hamza, I. Pápai: Org. Lett., 9, 4279 (2007).

    Article  CAS  Google Scholar 

  15. A.D. Becke: J. Chem. Phys., 98, 1372 (1993).

    Article  CAS  Google Scholar 

  16. A.D. Becke: J. Chem. Phys., 98, 5648 (1993).

    Article  CAS  Google Scholar 

  17. C. Lee, W. Yang, R.G. Parr: Phys. Rev. B, 37, 785 (1988).

    Article  CAS  Google Scholar 

  18. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch: J. Phys. Chem., 98, 11623(1994).

    Article  CAS  Google Scholar 

  19. P.J. Stephens, F.J. Devlin, C.S. Ashvar, K.L. Bak, P.R. Taylor, M.J. Frisch: ACS Symp. Ser., 629, 105 (1996).

    Article  CAS  Google Scholar 

  20. Y. Zhao, B. J. Lynch, D.G. Truhlar: J. Phys. Chem. A, 108, 2715 (2004).

    Article  CAS  Google Scholar 

  21. B.J. Lynch, P.L. Fast, M. Harris, D.G. Truhlar: J. Phys. Chem. A, 104, 4811 (2000).

    Article  CAS  Google Scholar 

  22. Y. Zhao, D.G. Truhlar: J. Phys. Chem. A, 108, 6908 (2004).

    Article  CAS  Google Scholar 

  23. Y. Zhao, N.E. Schultz, D.G. Truhlar: J. Chem. Phys., 123, 161103 (2005).

    Google Scholar 

  24. Y. Zhao, N.E. Schultz, D.G. Truhlar: G.J. Chem: Theory Comput., 2, 364 (2006).

    Article  CAS  Google Scholar 

  25. J.J. Tao, P. Perdew, V.N. Staroverov, G.E. Scuseria: Phys. Rev. Lett., 91, 146401 (2003).

    Google Scholar 

  26. V.N. Staroverov, G.E. Scuseria, J. Tao, J.P. Perdew: J. Chem. Phys., 119, 12129 (2003).

    Google Scholar 

  27. D.E. Woon, T.H. Dunning Jr.: J. Chem. Phys., 98, 1358 (1993).

    Article  CAS  Google Scholar 

  28. R.A. Kendall, T.H. Dunning Jr., R.J. Harrison: J. Chem. Phys., 96, 6796 (1992).

    Article  CAS  Google Scholar 

  29. A.D. McLean, G.S. Chandler: J. Chem. Phys., 72, 5639 (1980).

    Article  CAS  Google Scholar 

  30. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople: J. Chem. Phys., 72, 650 (1980).

    Article  CAS  Google Scholar 

  31. F. Weigend, R. Ahlrichs: Phys. Chem. Chem. Phys., 7, 3297 (2005).

    Article  CAS  Google Scholar 

  32. T. Helgaker, W. Klopper, H. Koch, J. Noga: J. Chem. Phys., 106, 9639 (1997).

    Article  CAS  Google Scholar 

  33. J. Zheng, Y. Zhao, D.G. Truhlar: J. Chem. Theory and Comp., 3, 569 (2007).

    Article  CAS  Google Scholar 

  34. R. Kosztyu, G. Lendvay: manuscript in preparation.

  35. G. Lendvay, I. Mayer: Chem. Phys. Lett., 297, 365 (1998).

    Article  CAS  Google Scholar 

  36. Gaussian 03, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople: Gaussian, Inc., Wallingford CT, 2004.

    Google Scholar 

  37. I.C. Gerber, J.G. Ángyán: Chem. Phys. Lett., 415, 100 (2005).

    Article  CAS  Google Scholar 

  38. H. Iikura, T. Tsuneda, T. Yanai, K. Hirao: J. Chem. Phys., 115, 3540 (2001).

    Article  CAS  Google Scholar 

  39. O. Vydrov, G.E. Scuseria: J. Chem. Phys., 125, 234109 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Lendvay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosztyu, R., Lendvay, G. Testing the performance of density functionals for the calculation of energetic properties of complex-forming radical-molecule reactions. React Kinet Catal Lett 96, 233–244 (2009). https://doi.org/10.1007/s11144-009-5539-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-009-5539-z

Keywords

Navigation