Skip to main content
Log in

Dynamic risk, accounting-based valuation and firm fundamentals

  • Published:
Review of Accounting Studies Aims and scope Submit manuscript

Abstract

This study extends the accounting-based valuation framework of Ohlson (Contemp Acc Res 11(2):661–687, 1995) and Feltham and Ohlson (Acc Rev 74(2):165–183, 1999) to incorporate dynamic expectations about the level of systematic risk in the economy. Our model explains recent empirical findings documenting a strong negative association between changes in economy-wide risk and future stock returns. Importantly, the model also generates costs of capital that are solely a linear function of accounting variables and other firm fundamentals, including the book-to-market ratio, the earnings-to-price ratio, the forward earnings-to-price ratio, size and the dividend yield. This result provides a theoretical rationale for the inclusion of these popular variables in cost of capital (expected return) computations by the accounting and finance literatures and obviates the need to estimate costs of capital from unobservable (future) covariances. The model also generates an accounting return decomposition in the spirit of Vuolteenaho (J Finance 57(1):233–264, 2002). Empirically, we find that costs of capital generated by our model are significantly associated with future returns both in and out of sample in contrast to standard benchmark models. We further obtain significantly lower valuation errors in out-of-sample tests than traditional models that ignore dynamic risk expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As we show further below, the dividend yield can be eliminated using the clean surplus relation in which case the cost of capital can be expressed solely (in addition to size) as a linear function of accounting numbers, namely, the past book-to-market ratio, the current book-to-market ratio, the earnings-price ratio, and the forward earnings-price ratio.

  2. See Ohlson (2009) and the citations therein.

  3. See their Corollary 3.

  4. To the best of our knowledge, Morel (2003) is the first paper to decry this disconnect and attempt to deal with it.

  5. The latter assumption is for simplicity. Relaxing this condition would increase the number of variables in the stock price equation by one.

  6. Because our analysis is in discrete time, this specific form of discount factor may yield negative values. We assume that does not occur

  7. This result obtains by assuming that the market portfolio has stochastic risk. This is a straightforward extension of the basic derivations in Cochrane (2001), Chapter 9.

  8. We have also solved for a model where risk follows a mean-reverting process. The implications of our results do not change even when risk is assumed to mean-revert.

  9. The result that λ1 is positive presumes a positive correlation (ρ) between shocks to abnormal earnings (\(\epsilon_{t+1}\)) and shocks to the stochastic discount factor (e t+1). On average it is unlikely to be otherwise as long as growth in the economy and growth in firm level abnormal earnings are positively correlated. To complete the argument note that the discount factor represents the marginal rate of consumption in the economy or growth in the economy—see “Appendix 1”. Therefore shocks to the discount rate factor are driven by shocks to aggregate consumption or shocks to aggregate growth, represented by e t+1 which, in turn, should be positively related to shocks to (abnormal) earnings \(\epsilon_{t+1}\).

  10. Note that λ1 is the firm level driver of expected returns being a function of the persistence of abnormal earnings, the volatility of abnormal earnings, and the correlation between (shocks to) abnormal earnings and (shocks to) economy-wide systematic risk in the economy.

  11. The restriction on earnings growth does not affect any of our results, if anything our results are stronger when we remove this restriction.

  12. We prefer to use equation (11), which includes the dividend yield, rather than Eq. (12) because of the high correlation between current and past book-to-market ratios. We refer to Eq. (11) as the accounting-based model although size and the dividend yield are not accounting variables.

  13. Particularly, we measure next period expected earning by multiplying 1 year ahead concensus IBES earnings by w d and 2 year ahead concensus IBES earnings by 1 − w d where w d is the difference between the firms ficscal year end date and the current forecast date divided by 365.

  14. We assume that long-run abnormal earnings are cross-sectionally constant, consistent with the notion that, in the long-run, a firm will grow to the point where it resembles a cross-section of firms.

  15. The results in this and the following tables are not sensitive to the size of the estimation window.

  16. Letting \(Z_{t}=(R_{f}-1)\frac{VIX_{t}}{S_{t}}-\frac{\Updelta VIX_{t}}{S_{t}},\) we also include Z t-1 in the regression.

  17. The firm-level \(\hat{\lambda}_{1},\) estimated market beta, and estimated FF factor betas are updated annually each April.

  18. Since \(\hat{\lambda}_{1}\) is already an estimated coefficient, we force a coefficient of one for \(\frac{\hat{\lambda}_{1}VIX_{t}}{B_{t}}\) when estimating Eq. (18).

  19. Industries are based on the Fama–French 48 industry classifications downloaded from Ken French’s website.

  20. Specifically, the two RIM models used assume a functional form of \(S_{t}=B_{t}+\sum_{i=1}^{T}E_{t}[\frac{x_{t+i}^{a}}{(1+r)^{i}}]+E_{t}[\frac{x_{t+i}^{a}(1+g)}{(1+r)^{5}(r-g)}]\), where B t is book value, x a t+i is abnormal earnings at time t + i and g is growth in abnormal earnings. It is assumed that T = t + 5 and a long-term growth rate of 0. Various other assumptions of long-term growth tended to yield higher valuation errors than the assumption of zero growth.

  21. The effects of winsorizing the data and constraining the absolute pricing error to 1 reduces the performance of our model relative to the benchmarks. If we do not apply these filters, our model does even better than what is presented in the tables relative to the benchmark models.

References

  • Ang, A., Hodrick, R., Xing, Y., & Zhang, X. (2006). The cross-section of volatility and expected returns. Journal of Finance, 61(1), 259–299.

    Article  Google Scholar 

  • Ang, A., & Liu, J. (2001). A general affine earnings valuation model. Review of Accounting Studies, 6(4), 397–425.

    Article  Google Scholar 

  • Bali, T., Cakici, N., & Tang, Y. (2009). The conditional beta and the cross-section of expected returns. Financial Management, 38(1), 103–137.

    Article  Google Scholar 

  • Callen, J., & Segal, D. (2004). Do accruals drive firm-level stock returns? A variance decomposition analysis. Journal of Accounting Research, 42(3), 527–560.

    Article  Google Scholar 

  • Callen, J., & Segal, D. (2005). Empirical tests of the Feltham–Ohlson (1995) model. Review of Accounting Studies, 10(4), 409–429.

    Article  Google Scholar 

  • Cochrane, J. (2001). Asset pricing (Vol. 14). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Core, J., Guay, W., & Verdi, R. (2008). Is accruals quality a priced risk factor? Journal of Accounting and Economics, 46(1), 2–22.

    Article  Google Scholar 

  • Daniel, K., & Titman, S. (1997). Evidence on the characteristics of cross sectional variation in stock returns. Journal of Finance, 52(1), 1–33.

    Article  Google Scholar 

  • Dimson, E. (1979). Risk measurement when shares are subject to infrequent trading. Journal of Financial Economics, 7(2), 197–226.

    Article  Google Scholar 

  • Fama, E., & French, K. (1992). The cross-section of expected stock returns. Journal of Finance, 47(2), 427–465.

    Article  Google Scholar 

  • Fama, E., & French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56.

    Article  Google Scholar 

  • Feltham, G., & Ohlson, J. (1995). Valuation and clean surplus accounting for operating and financial activities. Contemporary Accounting Research, 11(2), 689–731.

    Article  Google Scholar 

  • Feltham, G., & Ohlson, J. (1999). Residual earnings valuation with risk and stochastic interest rates. The Accounting Review, 74(2), 165–183.

    Article  Google Scholar 

  • Gode, D., & Ohlson, J. (2004). Accounting-based valuation with changing interest rates. Review of Accounting Studies, 9(4), 419–441.

    Article  Google Scholar 

  • Hagan, P., Kumar, D., & Lesniewski, A. (2002). Managing smile risk (pp. 84–108). Wilmott Magazine.

  • Lewellen, J. (2011). The cross section of expected stock returns. Working paper, Dartmouth College.

  • Morel, M. (2003). Endogenous parameter time series estimation: Ohlson versus alternative nested cash flow models. Journal of Business Finance & Accounting, 30(9/10), 1341–1363.

    Google Scholar 

  • Nekrasov, A., & Shroff, P. (2009). Fundamentals-based risk measurement in valuation. The Accounting Review, 84, 1983.

    Article  Google Scholar 

  • Ohlson, J. (1995). Earnings, book values, and dividends in equity valuation. Contemporary Accounting Research, 11(2), 661–687.

    Article  Google Scholar 

  • Ohlson, J. (2009). Accounting data and value: The basic results. Contemporary Accounting Research, 26(1), 231–259.

    Article  Google Scholar 

  • Pástor, L., & Veronesi, P. (2003). Stock valuation and learning about profitability. Journal of Finance, 58(5), 1749–1790.

    Article  Google Scholar 

  • Penman, S. H., & Zhu, L. (2011). Accounting anomalies, risk and return. Working paper, Columbia University and Boston University.

  • Subrahmanyam, A. (2010). The cross-section of expected stock returns: What have we learned from the past twenty-five years of research? European Financial Management, 16(1), 27–42.

    Article  Google Scholar 

  • Vuolteenaho, T. (2002). What drives firm-level stock returns? Journal of Finance 57(1), 233–264.

    Article  Google Scholar 

Download references

Acknowledgements

We owe a debt of gratitude to the anonymous reviewers of this Journal and Jim Ohlson (the editor) for their insightful comments and guidance. We also wish to thank Judson Caskey, Sandra Chamberlain, Mark Huson, Yu Hou, Alastair Lawrence, Miguel Minutti-Meza and Dan Segal for their helpful comments. Finally, we acknowledge the remarks by workshop participants at Singapore Management University and Cyprus University of Technology, and by conference participants at the AAA, CAAA and FARS 2012 conferences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Lyle.

Appendices

Appendix 1

1.1 Derivation of the discount factor

The stochastic discount factor m t,t+1 is defined as the marginal rate substitution of aggregate consumption between two periods (see Cochrane 2001):

$$ m_{t,t+1} =\frac{M_{t+1}}{M_{t}}, $$
(19)
$$ M_{t} =\frac{\partial U(C_{t})}{\partial C_{t}}, $$
(20)

where \(U(\cdot) \) is a representative agent’s utility function, and C t is aggregate consumption. Assuming a standard power utility economy with a risk aversion parameter α, then

$$ U(C_{t}) =\frac{C_{t}^{1-\alpha }}{1-\alpha } $$
(21)
$$ \Rightarrow M_{t} =C_{t}^{-\alpha }. $$
(22)

If consumption grows at the rate g t+1, then next period consumption is \(C_{t+1}=C_{t}\exp (g_{t+1})\) so that:

$$ m_{t,t+1} =\exp (-\alpha g_{t+1}) $$
(23)
$$ \approx a-bg_{t+1}, $$
(24)

where a and b > 0 are constants. This result accords both with intuition and general linear asset pricing models. Firms whose (abnormal) earnings are positively correlated with aggregate consumption are discounted more because of risk aversion—note the negative sign in Eq. (24)—consistent with the implications of the consumption CAPM.

The expectation of m t,t+1 must be the gross risk-free discount rate, E t [m t,t+1] = R −1 f , which implies in turn that

$$ m_{t,t+1} =E_{t}[m_{t,t+1}]+(m_{t,t+1}-E_{t}[m_{t,t+1}]) $$
(25)
$$ =R_{f}^{-1}(1-bR_{f}(g_{t+1}-E_{t}[g_{t+1}]). $$
(26)

Assuming that growth in aggregate consumption takes the dynamics g t+1 = g + σ g,t e t+1 and that σ g,t+1 = σ g,t  + ξ t+1 (where e t+1 and ξ t+1 are mean zero random variables as in the text), then

$$ m_{t,t+1}=R_{f}^{-1}(1-bR_{f}\sigma_{g,t}e_{t+1}). $$
(27)

Calling bR f σ g,t σ m,t yields the same form of the dynamic discount factor used in this study:

$$ m_{t,t+1}=R_{f}^{-1}(1-\sigma_{m,t}e_{t+1}). $$

This discount factor readily relates to the CAPM. Assume that consumption can be proxied by the wealth in the market portfolio, then Eq. (24) can be replaced with the discount factor that generates the CAPM:

$$ m_{t,t+1}=a-br_{m,t+1}, $$
(28)

where r m,t+1 is the return on the market portfolio.

Appendix 2

2.1 Proof of Proposition 1

The underlying dynamics are given by:

$$ \begin{aligned} x_{t+1}^{a} &=\omega x_{t}^{a}+(1-\omega) x_{L}^{a}+v_{t}+\epsilon_{t+1},\\ v_{t+1} &=\gamma v_{t}+u_{t+1}, \\ m_{t,t+1} &=m_{t+1}=R_{f}^{-1}(1-\sigma_{m,t}e_{t+1}), \\ m_{t,t+2} &=m_{t+1}m_{t+2}=R_{f}^{-1}(1-\sigma_{m,t}e_{t+1})R_{f}^{-1}(1-\sigma_{m,t+1}e_{t+2}) \\ &=R_{f}^{-2}(1-\sigma_{m,t}e_{t+1})(1-\sigma_{m,t+1}e_{t+2}), \\ \sigma_{m,t+1} &=\sigma_{m,t}+\xi_{t+1}. \end{aligned} $$

All error terms are assumed to be i.i.d and are orthogonal to one another except for \(\epsilon_{t+1}\) and e t+1, which have a correlation coefficient of ρ. The expectation operator \(E_{t}[\cdot ]\) represents a conditional expectation given information at time t.

From Eq. (1) in the text, the price of the equity is given by:

$$ \begin{aligned} S_{t} &=B_{t}+\sum_{i=1}^{\infty }R_{f,t,t+i}^{-1}E_{t}[x_{t+i}^{a}]+\sum_{i=1}^{\infty }cov_{t}(m_{t,t+i},x_{t+i}^{a})\\ &=B_{t}+\sum_{i=1}^{\infty }E_{t}[m_{t,t+i}x_{t+i}^{a}]. \end{aligned} $$

Let z t+1 = x a t+1 m t,t+1, then

$$ \begin{aligned} E_{t}[z_{t+1}] &=E_{t}[x_{t+1}^{a}m_{t+1}] \\ &=E_{t}[m_{t+1}]E_{t}[x_{t+1}^{a}]+E_{t}[(m_{t+1}-E_{t}[m_{t+1}])(x_{t+1}^{a}-E_{t}[x_{t+1}^{a}])\\ &=\frac{1}{R_{f}}(\omega E_{t}[x_{t}^{a}]+E_{t}[v_{t}]+(1-\omega) x_{L}^{a})-\frac{1}{R_{f}}E_{t}(\sigma_{m,t}e_{t+1}\epsilon_{t+1})\\ &=\frac{1}{R_{f}}(\omega E_{t}[x_{t}^{a}]+E_{t}[v_{t}]+(1-\omega) x_{L}^{a}-\sigma_{m,t}\rho \sigma_{x}). \end{aligned} $$

By the law of iterated expectations:

$$ \begin{aligned} E_{t}[z_{t+2}] &=E_{t}[E_{t+1}[z_{t+2} ] ] \\ &=E_{t}[\frac{1}{R_{f}^{2}}(1-E_{t+1}[\sigma_{m,t}e_{t+1}])(\omega E_{t+1}[x_{t+1}^{a}] \\ &\quad +E_{t+1}[v_{t+1}]+(1-\omega) x_{L}^{a}-E_{t+1}[\sigma_{m,t+1}]\rho \sigma_{x})] \\ &=E_{t}[\frac{1}{R_{f}}m_{t+1}(\omega x_{t+1}^{a}+v_{t+1}+(1-\omega) x_{L}^{a}-\sigma_{m,t+1}\rho \sigma_{x})] \\ &=\frac{1}{R_{f}}E_{t}[\omega z_{t+1}+m_{t+1}(v_{t+1}+(1-\omega) x_{L}^{a}-\sigma_{m,t+1}\rho \sigma_{x})] \\ &=\frac{1}{R_{f}}\omega E_{t}[z_{t+1}]+\frac{1}{R_{f}^{2}} (E_{t}[v_{t+1}]+(1-\omega) x_{L}^{a}-\sigma_{m,t}\rho \sigma_{x})\\ &=\frac{1}{R_{f}}\omega E_{t}[z_{t+1}]+\frac{1}{R_{f}^{2}}(\gamma v_{t}+(1-\omega) x_{L}^{a}-\sigma_{m,t}\rho \sigma_{x}) \\ &=\frac{1}{R_{f}^{2}}(\omega (\omega E_{t}[x_{t}^{a}]+E_{t}[v_{t}]+(1-\omega) x_{L}^{a}-\sigma_{m,t}\rho \sigma_{x})+\gamma v_{t}+(1-\omega) x_{L}^{a}-\sigma_{m,t}\rho \sigma_{x}) \\ &=\frac{1}{R_{f}^{2}}(\omega^{2}x_{t}^{a}+(\omega +\gamma) v_{t}+(\omega +1)(1-\omega) x_{L}^{a}-(\omega +1)\sigma_{m,t}\rho \sigma_{x}). \end{aligned} $$

Again, using the law of iterated expectations, we can write:

$$ E_{t}[z_{t+3}]=E_{t}[E_{t+1}[E_{t+2}[z_{t+3}]]]. $$

We solve the expectation by moving from right to left:

$$ \begin{aligned} E_{t+2}[z_{t+3}] &=E_{t+2}[\frac{1}{R_{f}}m_{t+1}m_{t+2}(\omega x_{t+2}^{a}+v_{t+2}+(1-\omega) x_{L}^{a}-\sigma_{m,t+2}\rho \sigma_{x})] \\ &=\frac{1}{R_{f}}E_{t+2}[m_{t+1}m_{t+2}\omega x_{t+2}^{a}]\\ &\quad +\frac{1}{R_{f}}E_{t+2}[m_{t+1}m_{t+2}(v_{t+2}+(1-\omega) x_{L}^{a}-\sigma_{m,t+2}\rho \sigma_{x})]. \end{aligned} $$

Similarly,

$$ \begin{aligned} E_{t+1}[E_{t+2}[z_{t+3} ] ] &=\frac{1}{R_{f}}E_{t+1}[m_{t+1}m_{t+2}\omega x_{t+2}^{a}]\\ &\quad +\frac{1}{R_{f}^{2}}E_{t+1}[m_{t+1}(\gamma v_{t+1}+(1-\omega) x_{L}^{a}-\sigma_{m,t+1}\rho \sigma_{x})]\\ &=\frac{1}{R_{f}^{2}}E_{t+1}[m_{t+1}\omega (\omega x_{t+1}^{a}+v_{t+1}+(1-\omega) x_{L}^{a}-\sigma_{m,t+1}\rho \sigma_{x})]\\ &\quad +\frac{1}{R_{f}^{2}}E_{t+1}[m_{t+1}(\gamma v_{t+1}+(1-\omega) x_{L}^{a}-\sigma_{m,t+1}\rho \sigma_{x})]. \end{aligned} $$

Finally,

$$ \begin{aligned} E_{t}[E_{t+1}[E_{t+2}[z_{t+3} ] ] ] &=\frac{1}{R_{f}^{2}}\omega^{2}E_{t}[m_{t+1}x_{t+1}^{a}]+\frac{1}{R_{f}^{2}}\omega E_{t}[m_{t+1}(v_{t+1}+(1-\omega) x_{L}^{a}-\sigma_{m,t+1}\rho \sigma_{x})] \\ &\quad +\frac{1}{R_{f}^{2}}E_{t}[m_{t+1}(\gamma v_{t+1}+(1-\omega) x_{L}^{a}-\sigma_{m,t+1}\rho \sigma_{x})]\\ &=\frac{1}{R_{f}^{2}}\omega^{2}E_{t}[m_{t+1}x_{t+1}^{a}]+\frac{1}{R_{f}^{3} }\omega E_{t}[v_{t+1}+(1-\omega) x_{L}^{a}-\sigma_{m,t+1}\rho \sigma_{x}] \\ &\quad +\frac{1}{R_{f}^{3}}E_{t}[\gamma v_{t+1}+(1-\omega) x_{L}^{a}-\sigma_{m,t+1}\rho \sigma_{x}]\\ &=\frac{1}{R_{f}^{3}}\omega^{2}(\omega E_{t}[x_{t}^{a}]+E_{t}[v_{t}]+(1-\omega) x_{L}^{a}-\sigma_{m,t}\rho \sigma_{x}) \\ &\quad +\frac{1}{R_{f}^{3}}\omega (\gamma v_{t}+(1-\omega) x_{L}^{a}-\sigma_{m,t}\rho \sigma_{x})\\ &\quad +\frac{1}{R_{f}^{3}}(\gamma^{2}v_{t}+(1-\omega) x_{L}^{a}-\sigma_{m,t}\rho \sigma_{x}). \end{aligned} $$

Thus,

$$ \begin{aligned} E_{t}[z_{t+3}] &=\frac{1}{R_{f}^{3}}[(\omega^{3}x_{t}^{a}+\omega^{2}v_{t}+\omega^{2}(1-\omega) x_{L}^{a}-\omega^{2}\sigma_{m,t}\rho \sigma_{x})\\ &\quad +\omega \gamma v_{t}+\omega (1-\omega) x_{L}^{a}-\omega \sigma_{m,t}\rho \sigma_{x} \\ &\quad +\gamma^{2}v_{t}+(1-\omega) x_{L}^{a}-\sigma_{m,t}\rho \sigma_{x}] \\ &=\frac{1}{R_{f}^{3}}[\omega^{3}x_{t}^{a}+(\omega^{2}+\omega \gamma +\gamma^{2})v_{t}+(\omega^{2}+\omega +1)(1-\omega) x_{L}^{a} \\ &\quad -(\omega^{2}+\omega +1)\sigma_{m,t}\rho \sigma_{x}] \\ &=\frac{1}{R_{f}^{3}}\left[ \omega^{3}x_{t}^{a}+\frac{\omega^{3}-\gamma^{3}}{\omega -\gamma }v_{t}+\frac{\omega^{3}-1^{3}}{\omega -1}(1-\omega) x_{L}^{a}-\frac{\omega^{3}-1^{3}}{\omega -1}\sigma_{m,t}\rho \sigma_{x} \right] . \end{aligned} $$

The pattern emerges, and we see that

$$ E_{t}[z_{t+i}]=\frac{1}{R_{f}^{i}}\left[ \omega^{i}x_{t}^{a}+\frac{\omega^{i}-\gamma^{i}}{\omega -\gamma }v_{t}+\frac{\omega^{i}-1}{\omega -1} (1-\omega )x_{L}^{a}-\frac{\omega^{i}-1}{\omega -1}\sigma_{m,t}\rho \sigma_{x}\right] . $$

Now evaluating the summation yields:

$$ \sum_{i=1}^{\infty }E_{t}[z_{t+i}]=\frac{R_{f}(1-\omega )}{(R_{f}-\omega) (R_{f}-1)}x_{L}^{a}+\frac{\omega }{R_{f}-\omega }x_{t}^{a}+\frac{R_{f}}{ (R_{f}-\omega) (R_{f}-\gamma )}v_{t}-\frac{R_{f}\sigma_{x}\rho }{ (R_{f}-\omega )(R_{f}-1)}\sigma_{m,t}. $$

Thus the form of the stock price is:

$$ \begin{aligned} S_{t} &=B_{t}+\alpha_{1}x_{L}^{a}+\alpha_{2}x_{t}^{a}+\alpha_{3}v_{t}-\lambda_{1}\sigma_{m,t},\\ \alpha_{1} &=\frac{R_{f}(1-\omega) }{(R_{f}-\omega) (R_{f}-1)}, \\ \alpha_{2} &=\frac{\omega }{R_{f}-\omega }, \\ \alpha_{3} &=\frac{R_{f}}{(R_{f}-\omega) (R_{f}-\gamma) }, \\ \lambda_{1} &=\frac{R_{f}\sigma_{x}\rho }{(R_{f}-\omega) (R_{f}-1)}, \end{aligned} $$

which is Eq. (6) of Proposition 1.

To prove Eq. (7) of Proposition 1, substitute out "other information" as follows:

$$ \begin{aligned} x_{t+1}^{a} &=\omega x_{t}^{a}+(1-\omega) x_{L}^{a}+v_{t}+\epsilon_{t+1}, \\ E_{t}[x_{t+1}^{a}] &=\omega x_{t}^{a}+(1-\omega) x_{L}^{a}+v_{t}. \end{aligned} $$

This implies that

$$ v_{t}=E_{t}[x_{t+1}^{a}]-\omega x_{t}^{a}-(1-\omega) x_{L}^{a}. $$

Substituting the latter into the price equation, we can now rewrite price in terms of accounting data and expected next period abnormal earnings. Specifically,

$$ \begin{aligned} S_{t} &=B_{t}+[\alpha_{1}-\alpha_{3}(1-\omega) ]x_{L}^{a}+(\alpha_{2}-\omega \alpha_{3})x_{t}^{a}+\alpha_{3}E_{t}[x_{t+1}^{a}]-\lambda_{1}\sigma_{m,t} \\ &=B_{t}+R_{f}(1-\omega) \left(\frac{1}{(R_{f}-\omega) (R_{f}-1)}-\frac{1}{ (R_{f}-\omega) (R_{f}-\gamma) }\right) x_{L}^{a}\\ &\quad +\omega \left(\frac{1}{R_{f}-\omega }-\frac{R_{f}}{(R_{f}-\omega) (R_{f}-\gamma) }\right) x_{t}^{a}+\alpha_{3}E_{t}[x_{t+1}^{a}]-\lambda_{1}\sigma_{m,t} \\ &=B_{t}+\left(\frac{R_{f}(1-\omega) (1-\gamma) }{(R_{f}-\omega) (R_{f}-\gamma) (R_{f}-1)}\right) x_{L}^{a}\\ & \quad -\left(\frac{\gamma \omega }{(R_{f}-\omega) (R_{f}-\gamma) }\right) x_{t}^{a}+\alpha_{3}E_{t}[x_{t+1}^{a}]-\lambda_{1}\sigma_{m,t}. \end{aligned} $$

Noting that

$$ E_{t}[x_{t+1}^{a}]=E_{t}[x_{t+1}-(R_{f}-1)B_{t}], $$

and substituting, yields Eq. (7):

$$ \begin{aligned} S_{t} &=B_{t}+\gamma_{1}x_{L}^{a}-(R_{f}-1)\alpha_{3}B_{t}-\left(\frac{ \gamma \omega }{(R_{f}-\omega) (R_{f}-\gamma) }\right) x_{t}^{a}+\alpha_{3}E_{t}[x_{t+1}]-\lambda_{1}\sigma_{m,t}. \\ &=\gamma_{1}x_{L}^{a}+\left(\frac{R_{f}(1-\omega -\gamma) +\omega \gamma }{(R_{f}-\omega) (R_{f}-\gamma) }\right) B_{t}-\left(\frac{\gamma \omega }{ (R_{f}-\omega) (R_{f}-\gamma) }\right) x_{t}^{a}+\alpha_{3}E_{t}[x_{t+1}]-\lambda_{1}\sigma_{m,t}. \\ &=\gamma_{1}x_{L}^{a}+g_{2}B_{t}-\left(\frac{\gamma \omega }{ (R_{f}-\omega) (R_{f}-\gamma) }\right) (x_{t}-(R_{f}-1)B_{t-1})+\alpha_{3}E_{t}[x_{t+1}]-\lambda_{1}\sigma_{m,t}.\\ &=\gamma_{1}x_{L}^{a}+g_{2}B_{t}+g_{3}x_{t}-(R_{f}-1)g_{3}B_{t-1}+\alpha_{3}E_{t}[x_{t+1}]-\lambda_{1}\sigma_{m,t}. \\ &=\gamma_{1}x_{L}^{a}+g_{2}B_{t}+g_{3}x_{t}-(R_{f}-1)g_{3}(B_{t}-x_{t}+D_{t})+\alpha_{3}E_{t}[x_{t+1}]-\lambda_{1}\sigma_{m,t}. \\ &=\gamma_{1}x_{L}^{a}+[g_{2}-(R_{f}-1)g_{3}]B_{t}+[g_{3}+(R_{f}-1)g_{3}]x_{t}-(R_{f}-1)g_{3}D_{t}+\alpha_{3}E_{t}[x_{t+1}]-\lambda_{1}\sigma_{m,t}. \\ &=\gamma_{1}x_{L}^{a}+\frac{R_{f}(1-\omega) (1-\gamma) }{(R_{f}-\omega) (R_{f}-\gamma) }B_{t}-\frac{R_{f}\gamma \omega }{(R_{f}-\omega) (R_{f}-\gamma) }x_{t}+\frac{\omega \gamma (R_{f}-1)}{(R_{f}-\omega) (R_{f}-\gamma) }D_{t}+\alpha_{3}E_{t}[x_{t+1}]-\lambda_{1}\sigma_{m,t}.\\ &=\gamma_{1}x_{L}^{a}+\gamma_{2}B_{t}+\gamma_{3}x_{t}+\gamma_{4}D_{t}+\gamma_{5}E_{t}[x_{t+1}]-\lambda_{1}\sigma_{m,t}. \end{aligned} $$
$$ \begin{aligned} \gamma_{1} &=\frac{R_{f}(1-\omega) (1-\gamma) }{(R_{f}-\omega) (R_{f}-\gamma) (R_{f}-1)}\geq 0, \\ \gamma_{2} &=\frac{R_{f}(1-\omega) (1-\gamma) }{(R_{f}-\omega) (R_{f}-\gamma) }\geq 0, \\ \gamma_{3} &=-\frac{R_{f}\gamma \omega }{(R_{f}-\omega) (R_{f}-\gamma) } \leq 0, \\ \gamma_{4} &=\frac{\omega \gamma (R_{f}-1)}{(R_{f}-\omega) (R_{f}-\gamma) } \geq 0,\\ \gamma_{5} &=\frac{R_{f}}{(R_{f}-\omega) (R_{f}-\gamma) }>0. \end{aligned} $$

\(\square\)

2.2 Proof of proposition 2

$$ \begin{aligned} S_{t+1} &=B_{t+1}+\alpha_{1}x_{L}^{a}+\alpha_{2}x_{t+1}^{a}+\alpha_{3}v_{t+1}-\lambda_{1}\sigma_{m,t+1} \\ &=B_{t}+x_{t+1}-D_{t+1}+\alpha_{1}x_{L}^{a}+\alpha_{2}x_{t+1}^{a}+\alpha_{3}v_{t+1}-\lambda_{1}\sigma_{m,t+1} \\ &=B_{t}R_{f}+x_{t+1}^{a}+\alpha_{1}x_{L}^{a}+\alpha_{2}x_{t+1}^{a}+\alpha_{3}v_{t+1}-\lambda_{1}\sigma_{m,t+1}-D_{t+1} \\ &=R_{f}B_{t}+\alpha_{1}x_{L}^{a}+(1+\alpha_{2})x_{t+1}^{a}+\alpha_{3}v_{t+1}-\lambda_{1}\sigma_{m,t+1}-D_{t+1}. \end{aligned} $$

Therefore,

$$ S_{t+1}+D_{t+1}=R_{f}B_{t}+\alpha_{1}x_{L}^{a}+(1+\alpha_{2})x_{t+1}^{a}+\alpha_{3}v_{t+1}-\lambda_{1}\sigma_{m,t+1}. $$

Now subtracting R f S t from the latter equation gives:

$$ \begin{aligned} S_{t+1}+D_{t+1}-R_{f}S_{t} &=\alpha_{1}x_{L}^{a}+(1+\alpha_{2})x_{t+1}^{a}+\alpha_{3}v_{t+1}-\lambda_{1}\sigma_{m,t+1} \\ &\quad - R_{f}(\alpha_{1}x_{L}^{a}+\alpha_{2}x_{t}^{a}+\alpha_{3}v_{t}-\lambda_{1}\sigma_{m,t}) \\ &=\alpha_{1}(1-R_{f})x_{L}^{a}+(1+\alpha_{2})x_{t+1}^{a}+\alpha_{3}v_{t+1}-\lambda_{1}\sigma_{m,t+1}\\ &\quad -R_{f}(\alpha_{2}x_{t}^{a}+\alpha_{3}v_{t}-\lambda_{1}\sigma_{m,t}). \end{aligned} $$

and

$$ \begin{aligned} x_{t+1}^{a} &=\omega x_{t}^{a}+(1-\omega) x_{L}^{a}+v_{t}+\epsilon_{t+1}, \\ (1+\alpha_{2})x_{t+1}^{a} &=\omega (1+\alpha_{2})x_{t}^{a}+(1+\alpha_{2})(1-\omega) x_{L}^{a}+(1+\alpha_{2})v_{t}+(1+\alpha_{2})\epsilon_{t+1}, \\ \alpha_{3}v_{t+1} &=\alpha_{3}\gamma v_{t}+\alpha_{3}u_{t+1}. \end{aligned} $$

Collecting like-terms yields:

$$ \begin{aligned} S_{t+1}+D_{t+1}-R_{f}S_{t} &=\alpha_{1}(1-R_{f})x_{L}^{a}+x_{t}^{a}((1+\alpha_{2})\omega -R_{f}\alpha_{2})\\ &\quad+[\alpha_{3}(\gamma -R_{f})+(1+\alpha_{2})]v_{t}-\lambda_{1}(1-R_{f})\sigma_{m,t} \\ &\quad+(1+\alpha_{2})(1-\omega) x_{L}^{a}+(1+\alpha_{2})\epsilon_{t+1}+\alpha_{3}u_{t+1}-\lambda_{1}\xi_{t+1}. \end{aligned} $$
$$ \begin{aligned} (1+\alpha_{2})\omega -R_{f}\alpha_{2} &=\frac{R_{f}}{R_{f}-\omega }\omega -R_{f}\frac{\omega }{R_{f}-\omega }=0,\\ \alpha_{3}(\gamma -R_{f})+(1+\alpha_{2}) &=\frac{-R_{f}}{R_{f}-\omega }+ \frac{R_{f}}{R_{f}-\omega }=0, \\ \alpha_{1}(1-R_{f})x_{L}^{a} &=-\frac{R_{f}(1-\omega) }{(R_{f}-\omega) } x_{L}^{a}=(1+\alpha_{2})(1-\omega) x_{L}^{a}. \end{aligned} $$

So,

$$ \begin{aligned} S_{t+1}+D_{t+1}-R_{f}S_{t} &=-\lambda_{1}(1-R_{f})\sigma_{m,t} \\ &+(1+\alpha_{2})\epsilon_{t+1}+\alpha_{3}u_{t+1}-\lambda_{1}\xi_{t+1}. \end{aligned} $$

Thus,

$$ \begin{aligned} S_{t+1}+D_{t+1}-R_{f}S_{t} &=\lambda_{1}(R_{f}-1)\sigma_{m,t} \\ &\quad+(1+\alpha_{2})\epsilon_{t+1}+\alpha_{3}u_{t+1}-\lambda_{1}\Updelta \sigma_{m,t}. \end{aligned} $$

The gross stock return is then given by:

$$ \frac{S_{t+1}+D_{t+1}}{S_{t}}=R_{f}+(R_{f}-1)\lambda_{1}\frac{\sigma_{m,t} }{S_{t}}+(1+\alpha_{2})\frac{\epsilon_{t+1}}{S_{t}}+\alpha_{3}\frac{ u_{t+1}}{S_{t}}-\lambda_{1}\frac{\Updelta \sigma_{m,t}}{S_{t}}. $$

Taking conditional expectations provides the expected stock return:

$$ E_{t}[\frac{S_{t+1}+D_{t+1}}{S_{t}}]=R_{f}+(R_{f}-1)\lambda_{1}\frac{\sigma_{m,t}}{S_{t}}. $$

\(\square\)

2.3 Proof of proposition 3

From the preceding proof, we have

$$ \begin{aligned} \mu_{t+1} &=R_{f}+(R_{f}-1)\lambda_{1}\frac{\sigma_{m,t}}{S_{t}},\\ \sigma_{m,t}\lambda_{1} &=\frac{1}{R_{f}-1}(\mu_{t+1}-R_{f})S_{t}. \end{aligned} $$

Substitute the latter into the value equation yields:

$$ \begin{aligned} S_{t} &=B_{t}+\alpha_{1}+\alpha_{2}x_{t}^{a}+\alpha_{3}v_{t}-\frac{1}{ R_{f}-1}(\mu_{t+1}-R_{f})S_{t},\\ S_{t}(1+\frac{1}{R_{f}-1}(\mu_{t+1}-R_{f})) &=B_{t}+\alpha_{1}+\alpha_{2}x_{t}^{a}+\alpha_{3}v_{t}, \\ \mu_{t+1} &=(R_{f}-1)(\frac{B_{t}}{S_{t}}+\frac{\alpha_{1}}{S_{t}}+\alpha_{2}\frac{x_{t}^{a}}{S_{t}}+\alpha_{2}\frac{v_{t}}{S_{t}}-1)+R_{f},\\ \mu_{t+1} &=R_{f}+(R_{f}-1)(\frac{B_{t}}{S_{t}}+\frac{\alpha_{1}}{S_{t}} +\alpha_{2}\frac{x_{t}^{a}}{S_{t}}+\alpha_{2}\frac{v_{t}}{S_{t}}-1) \\ &=1+(R_{f}-1)(\frac{B_{t}}{S_{t}}+\frac{\alpha_{1}}{S_{t}}+\alpha_{2} \frac{x_{t}^{a}}{S_{t}}+\alpha_{2}\frac{v_{t}}{S_{t}}). \end{aligned} $$

To prove Eq. (11), we use (7) of Proposition 1. That is, we substitute "other information," v t , with next period expected earnings as outlined in the proof of Proposition 1. Combining this with the results in Proposition 2 yields the (net) return dynamics:

$$ R_{t+1}-1=(R_{f}-1)\left(\gamma_{1}\frac{x_{L}^{a}}{S_{t}}+\gamma_{2} \frac{B_{t}}{S_{t}}+\gamma_{3}\frac{x_{t}}{S_{t}}+\gamma_{4}\frac{D_{t}}{ S_{t}}+\gamma_{5}\frac{E_{t}[x_{t+1}]}{S_{t}}\right) +(1+\alpha_{2})\frac{ \epsilon_{t+1}}{S_{t}}+\alpha_{3}\frac{u_{t+1}}{S_{t}}-\lambda_{1}\frac{ \Updelta \sigma_{m,t}}{S_{t}}. $$

Taking conditional expectations of both sides yields the desired result.

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyle, M.R., Callen, J.L. & Elliott, R.J. Dynamic risk, accounting-based valuation and firm fundamentals. Rev Account Stud 18, 899–929 (2013). https://doi.org/10.1007/s11142-013-9227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11142-013-9227-x

Keywords

JEL Classification

Navigation