Skip to main content
Log in

Reduction of Ohmic Losses in the Cavities of Low-Power Terahertz Gyrotrons

  • Published:
Radiophysics and Quantum Electronics Aims and scope

In the gyrotrons designed for the terahertz frequency range, the issue of primary interest is to ensure stable single-mode generation during operation at modes that are synchronous with higher cyclotron harmonics. The fraction of ohmic losses in the cavity is essentially important for such devices, since it not only limits the power of the output radiation and the efficiency of the gyrotron, but also affects the stability of its operating regime. The possibility to mitigate these undesirable effects by reducing the ohmic loss fraction due to the choice of materials and the technology of cavity manufacture and/or the temperature regime is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Nusinovich, M.K.A.Thumm, and M. I. Petelin, J. Infrared Millim. Terahertz Waves, 35, No. 4, 325–381 (2014). https://doi.org/10.1007/s10762-014-0050-7

    Article  Google Scholar 

  2. G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins Univ. Press, Baltimore, MD (2004).

    Google Scholar 

  3. T. Idehara and S.P. Sabchevski, J. Infrared Millim. Terahertz Waves, 38, No. 1, 62–68 (2017). https://doi.org/10.1007/s10762-016-0314-5

    Article  Google Scholar 

  4. M.Yu.Glyavin, G.G.Denisov, V. E. Zapevalov, et al., J. Commun. Technol. Electron., 59, No. 8, 792–797 (2014). https://doi.org/10.1134/S1064226914080075

    Article  Google Scholar 

  5. M. Yu. Glyavin and A. G. Luchinin, Radiophys. Quantum Electron., 50, Nos. 10–11, 755–761 (2007). https://doi.org/10.1007/s11141-007-0066-0

  6. R. J. Temkin, Terahertz Sci. Technol., 7, No. 1, 1–9 (2014). https://doi.org/10.11906/TST.001-009.2014.03.01

    Article  Google Scholar 

  7. N.A.Zavolsky, V. E. Zapevalov, O.V.Malygin, et al., Radiophys. Quantum Electron., 52, Nos. 5–6, 379 (2009). https://doi.org/10.1007/s11141-009-9148-5

    Article  ADS  Google Scholar 

  8. V. E. Zapevalov, Radiophys. Quantum Electron., 61, No. 4, 272–280 (2018). https://doi.org/10.1007/s11141-018-9888-1

    Article  ADS  Google Scholar 

  9. M. Thummm, J. Infrared Millim. Terahertz Waves, 41, No. 1, 1–140 (2020). https://doi.org/10.1007/s10762-019-00631-y

    Article  Google Scholar 

  10. G. S. Nusinovich and O. Dumbrajs, J. Infrared Millim. Terahertz Waves, 37, No. 1, 111–122 (2016). https://doi.org/10.1007/s10762-015-0192-2

    Article  Google Scholar 

  11. L. A. Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).

  12. L.P. Pitaevskii and E.M. Lifshitz, Physical Kinetics, Butterworth–Heinemann, Oxford (1981).

    Google Scholar 

  13. I. P. Bushminsky, Manufacture of Elements of Microwave Structures [in Russian], Vysshaya Shkola, Moscow (1974).

  14. A. D. Grigor’yev, Electrodynamics and Microwave Engineering [in Russian], Lan’, St. Petersburg (2007).

  15. G. S. Nusinovich and T. B. Pankratova, in: Gyrotron [in Russian], Inst. Appl. Phys., Gorky (1981), pp. 169–184.

  16. M. A. Moiseev and G. S. Nusinovich, Radiophys. Quantum Electron., 17, No. 11, 1305–1311 (1974). https://doi.org/10.1007/BF01042032

    Article  ADS  Google Scholar 

  17. I. G. Zarnitsina and G. S. Nusinovich, Radiophys. Quantum Electron., 17, No. 12, 1418–1424 (1974). https://doi.org/10.1007/BF01039820

    Article  ADS  Google Scholar 

  18. N. A. Zavol’sky, V.E. Zapevalov, M. A. Moiseev, and L. L. Nemirovskaya, Radiophys. Quantum Electron., 47, No. 8, 603–614 (2004). https://doi.org/10.1023/B:RAQE.0000049558.36460.24

    Article  ADS  Google Scholar 

  19. X.-B.Qi, C.-H.Du, and P.-K. Liu, IEEE Trans. Electron Devices, 62, No. 12, 4278–4284 (2015). https://doi.org/10.1109/TED.2015.2493563

    Article  ADS  Google Scholar 

  20. I.V. Bandurkin, Y. K. Kalynov, P. B. Makhalov, et al., IEEE Trans. Electron Devices, 64, No. 1, 300–305 (2017). https://doi.org/10.1109/TED.2016.2629029

    Article  ADS  Google Scholar 

  21. N. P. Bogoroditsky, V. V. Pasynkov, and B. M. Tareev, Electrotechnical Materials [in Russian], Énergoatomizdat, Leningrad (1985).

  22. State Standard 19880-74. Electrical Engineering. Basic Concepts. Terms and Definitions [in Russian], State Standards Board of the USSR Council of Ministers, Moscow (1974).

  23. T. Geist, G. Dammertz, G. Hochschild, and W. Wiesbeck, in: 15th Int. Conf. on Infrared and Millimeter Waves, December 1, 1990. Orlando, USA, Vol. 1514, p. 15142A. https://doi.org/10.1117/12.2301492

  24. B. G. Livshits, V. S. Kraposhin, and Ya. L. Lipetsky, Physical Properties of Metals and Alloys [in Russian], Metallurgiya, Moscow (1980).

  25. O. E. Osintsev and V.N. Fedorov, Copper and Copper Alloys. Russian and Foreign Brands [in Russian], Innovatsionnoe Mashinostroenie, Moscow (2016).

  26. V.V.Parshin, E.A. Serov, and G.M.Bubnov, Radiophys. Quantum Electron., 56, Nos. 8–9, 554–560 (2014). https://doi.org/10.1007/s11141-014-9458-0

    Article  ADS  Google Scholar 

  27. E.A. Serov, V.V.Parshin, and G.M.Bubnov, IEEE Trans. Microwave Theory and Techniques, 64, No. 11, 3828–3838 (2016). https://doi.org/10.1109/TMTT.2016.2609411

    Article  ADS  Google Scholar 

  28. M. A. Moiseev, L. L. Nemirovskaya, V. E. Zapevalov, and N.A. Zavolsky, Int. J. Infrared and Millimeter Waves, 18, No. 11, 2117–2128 (1997). https://doi.org/10.1007/BF02678254

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zuev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 4, pp. 265–275, April 2021. Russian DOI: 10.52452/00213462_2021_64_04_265

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapevalov, V.E., Zuev, A.S., Parshin, V.V. et al. Reduction of Ohmic Losses in the Cavities of Low-Power Terahertz Gyrotrons. Radiophys Quantum El 64, 240–250 (2021). https://doi.org/10.1007/s11141-021-10127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10127-2

Navigation