Skip to main content
Log in

Features of the Ionospheric Artificial Airglow Caused by Ohmic Heating and Plasma Turbulence-Accelerated Electrons Induced by HF Pumping of the Sura Heating Facility

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of studying the ionospheric F2 region airglow in the atomic-oxygen red line (λ = 6300Ǻ) when the ionosphere is pumped by high-power HF radio waves. Either thermal modulation of the background airglow brightness or, simultaneously with it, the red-line intensity enhancement were observed, depending on the ionospheric and plasma-wave parameters. Analysis of the red-line emission behavior makes it possible to separate the influence of the ohmic heating and acceleration of electrons by plasma turbulence on the airglow features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gurevich, Phys. Usp. Fiz. Nauk, 50, No. 11, 1091 (2007).

    Article  ADS  Google Scholar 

  2. B.Gustavsson, T. Sergienko, M. Kosch, et al., Annales Geophys., 23, No. 5, 1747 (2005).

    Article  ADS  Google Scholar 

  3. F.E.Roach and J. L. Gordon, The Light of the Night Sky, D. Reidel (1973).

  4. M. A. Biondi, D. P. Sipler, and R.D.Hake, J. Geophys. Res., 75, No. 31, 6421 (1970).

    Article  ADS  Google Scholar 

  5. W. F. Utlaut and R.Cohen, Science, 174, 245 (1971).

  6. D.P. Sipler and M.A.Biondi, J. Geophys. Res,. 83, No. A4, 1519 (1978).

    Article  ADS  Google Scholar 

  7. G.P. Mantas and H.C.Carlson, J. Geophys. Res., 101, No. A1, 195 (1996).

    Article  ADS  Google Scholar 

  8. A. V. Gurevich, K.P. Zybin, and H.C.Carlson, Radiophys. Quantum Electron, 48, No. 9, 686 (2005).

    Article  ADS  Google Scholar 

  9. T. Sergienko, B.Gustavsson, U.Brandstrom, and K.Axelsson, Ann. Geophys., 30, 885 (2012).

    Article  ADS  Google Scholar 

  10. J.Weinstock, J. Geophys. Res., 80, No. 31, 4331 (1975).

    Article  ADS  Google Scholar 

  11. D. R. Nicholson, J. Geophys. Res., 82, No. 13, 1839 (1977).

    Article  ADS  Google Scholar 

  12. S. M. Grach, N. A. Mityakov, and V.Yu.Trakhtengerts, Radiophys. Quantum Electron, 27, No. 9, 766 (1984).

    Article  ADS  Google Scholar 

  13. S.M.Grach, V.V. Klimenko, A.V. Shindin, et al., Radiophys. Quantum Electron, 55, Nos. 1–2, 33 (2912).

    ADS  Google Scholar 

  14. T. B. Leyser, Space Sci. Rev., 98, Nos. 3–4, 223 (2001).

    Article  ADS  Google Scholar 

  15. V. V.Klimenko. S.M.Grach, E.N. Sergeev, et al., in: Proc. of the XXIII All-Russia Conf. on Radio-Wave Propagation, Ioshkar-Ola, May 23–26, 2011 [in Russian], Vol. 2, p. 239.

  16. A. V. Shindin, S. M. Grach, V. V.Klimenko, et al., Radiophys. Quantum Electron, 57, No. 11, 759 (2014).

    Article  ADS  Google Scholar 

  17. P. Stubbe, A. J. Stocker, F.Honary, et al., J. Geophys. Res. Space Physics, 99, No. A4, 6233 (1994).

    Article  Google Scholar 

  18. S. M. Grach, B. Thidé. and T. Leyser, Radiophys. Quantum Electron, 37, No. 5, 392 (1994).

    Article  ADS  Google Scholar 

  19. E. N. Sergeev, V. L. Frolov, S. M. Grach, and P.V.Kotov, Adv. Space Res., 38, No. 11, 2518 (2006).

    Article  ADS  Google Scholar 

  20. B. Gustavsson, T.B. Leyser, M.Kosch, et al., Phys. Rev. Lett., 97, No. 19, 195002 (2006).

    Article  ADS  Google Scholar 

  21. http://wdc.kugi.kyoto-u.ac.jp/igrf .

  22. I. S.Gulledge, D.M. Packer, S.G.Tilford, and J.T.Vanderslice, J. Geophys. Res. Space Phys., 73, No. 17, 5535 (1968).

    Article  ADS  Google Scholar 

  23. V. V. Adushkin, S. I.Kozlov, and A.V. Petrov, eds., Ecological Problems and Risks of Impact of the Rocket-Space Equipment on the Environment, A Reference Book [in Russian], Ankil, Moscow (2000).

  24. H. Lofas, N. Ivchenko, B.Gustavsson, et al., Ann. Geophys., 27, No. 6, 2585 (2009).

    Article  ADS  Google Scholar 

  25. A. A.Vedenov, in: M.A. Leontovich, ed., Reviews of Plasma Phys., Vol. 3, Consultants Bureau, New York (1967), p. 229.

  26. A. V. Gurevich and A.B. Shvartsburg, Nonlinear Theory of Radio-Wave Propagation in the Ionosphere [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  27. E.Mishin, B.Watkins, N. Lehtinen, et al., J. Geophys. Res. Space Phys., 121, No. A02, A021823 (2016).

    Google Scholar 

  28. A. Senior, M.T.Rietveld, T. K.Yeoman, and M. J. Kosch, J. Geophys. Res., 117, No. A04, A04309 (2012).

    ADS  Google Scholar 

  29. C. J. Bryers, M. J.Kosch, A. Senior, et al., J. Geophys. Res., 117, No. A09, A09301 (2012).

    ADS  Google Scholar 

  30. YU. A. Ignat’ev, Z. N. Krotova, and È. E. Mityakova, Radiophys. Quantum Electron., 20, No. 12, 1267 (1977).

    Article  ADS  Google Scholar 

  31. J. D. Hunter, Comp. Sci. Eng., 9, No. 3, 90 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Klimenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 6, pp. 481–501, June 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, V.V., Grach, S.M., Sergeev, E. et al. Features of the Ionospheric Artificial Airglow Caused by Ohmic Heating and Plasma Turbulence-Accelerated Electrons Induced by HF Pumping of the Sura Heating Facility. Radiophys Quantum El 60, 431–449 (2017). https://doi.org/10.1007/s11141-017-9812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9812-0

Navigation