Skip to main content
Log in

Application of the Two-Particle Correlation Function Approach to the Description of a Single-Pass Free Electron Laser Operated in SASE Mode

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe the theory of a superluminescent single-pass free electron laser based on the Bogolyubov chain of equations for multiparticle distribution functions. Special choice of the variables eliminates the retardation of interaction. A small parameter (inverse number of particles per signal growth length in the accompanying reference system) for the chain truncation is found. Expansion over this parameter makes it possible to neglect three-particle correlation functions and solve only the equations containing a single-particle distribution function and two-particle correlation functions. The calculation results are in good agreement with the conclusions based on the previously developed quasilinear theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Vinokurov, Rev. Accel. Sci. Technol., 3, No. 1, 77 (2010).

    Article  Google Scholar 

  2. C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys., 88, No. 1, 015006 (2016).

    Article  ADS  Google Scholar 

  3. V. L. Ginzburg, Izv. Akad. Nauk SSSR, Ser. Fiz., 11, No. 2, 165 (1947).

    Google Scholar 

  4. H. Motz, J. Appl. Phys., 22, No. 5, 527 (1951).

    Article  ADS  Google Scholar 

  5. N. A. Vinokurov and E.B. Levichev, Phys. Usp., 58, No. 9, 850 (2015).

    Article  ADS  Google Scholar 

  6. R. J. Dejus, O.A. Shevchenko, and N.A. Vinokurov, Nucl. Instruments Methods Phys. Res. Sect. A. Accel. Spectrometers, 429, No. 1, 225 (1999).

    Article  ADS  Google Scholar 

  7. S. Reiche, Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrometers, 429, No. 1, 243 (1999).

    Article  ADS  Google Scholar 

  8. W. M. Fawley, Phys. Rev. Spec. Top. Accel. Beams, 5, No. 7, 070701 (2002).

    Article  ADS  Google Scholar 

  9. E. L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrometers, 407, No. 1, 285 (1998).

    Article  ADS  Google Scholar 

  10. O.A. Shevchenko and N.A. Vinokurov, Nucl. Instruments Methods Phys. Res. Sect. A. Accel. Spectrometers. 507, No. 1, 84 (2003).

    Article  ADS  Google Scholar 

  11. Y. L. Klimontovich, Kinetic Theory of Electromagnetic Processes, Springer-Verlag, Berlin (1983).

    Book  Google Scholar 

  12. O.A. Shevchenko, “ Theory and calculation of the physical processes in the free-electron lasers with an irregular magnetic system,” Ph.D. Thesis (phys. & math.), Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences (2005) [in Russian].

  13. A.D. Myshkis, Linear Differential Equations with Delayed Argument [in Russian], Gostekhizdat (1951).

  14. P. A. M. Dirac, Rev. Mod. Phys., 21, No. 3, 392 (1949).

    Article  ADS  Google Scholar 

  15. L.D. Landau and E. M. Lifshitz, The Course of Theoretical Physics, Vol. 2, Pergamon Press (1971).

  16. L. I. Mandelstam, Lectures in Optics, Relativity Theory, and Quantum Mechanics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  17. G. B. Malykin, Phys. Usp., 52, No. 3, 263 (2009).

    Article  ADS  Google Scholar 

  18. N. N. Bogoliubov, Problems of Dynamic Theory in Statistical Physics, Tech. Inf. Service, Oak Ridge (1960).

    Google Scholar 

  19. S. Ishimaru, Basic Principles of Plasma Physics, Benjamin, Reading, Mass. (1973).

  20. W. Kleen and K. Pöschl, Introduction to Ultrahigh-Frequency Electronics, Part 2, Long-Interaction Tubes [tranlated from German], Sovetskoe Radio, Moscow (1963).

    Google Scholar 

  21. T. Shaftan and Z. Huang, Phys. Rev., 7, 080702 (2004).

    Google Scholar 

  22. O.A. Shevchenko and N.A. Vinokurov, Proc. FEL2009, Liverpool, UK, 23–28 August 2009, p.8.

  23. O.A. Shevchenko and N.A. Vinokurov, Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrometers, 603, No. 1, 46 (2009).

    Article  ADS  Google Scholar 

  24. N.A. Vinokurov, Z. Huang, O. Shevchenko, and K.-J. Kim, Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrometers, 475, No. 1, 74 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vinokurov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 1, pp. 41–59, January 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, O.A., Vinokurov, N.A. Application of the Two-Particle Correlation Function Approach to the Description of a Single-Pass Free Electron Laser Operated in SASE Mode. Radiophys Quantum El 60, 37–53 (2017). https://doi.org/10.1007/s11141-017-9775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9775-1

Navigation