Skip to main content
Log in

Analysis of Surface Waves in an Elastic Medium with Aquifer

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study propagation of seismoacoustic waves in a three-layer medium consisting of a homogeneous isotropic solid deformable layer loaded on a uniform liquid layer above a homogeneous isotropic solid half-space. This medium models a geological section in which the top soil layer is separated from the deep rock by an aquifer. The dispersion relation is obtained and analyzed, and its solutions for cases that are important from the practical point of view are presented. Features of the dispersion curves and spatial distribution of the mode fields made it possible not only to reveal the existence of an aquifer under the top soil layer, but also determine its thickness and depth. It is shown that the ratio of vertical and horizontal components of the displacement vector measured on the Earth’s surface is a significant parameter for solving the geological medium reconstruction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Koposova, ed., Methodology of the Urbanized Territory Protection Against Natural and Anthropogenic Effects” [in Russian], Architecture and Construction State University of Nizhny Novgorod, Nizhny Novgorod (2013).

  2. W. M. Ewing, W. S. Jardetzky, and E. Press, Elastic Waves in Layered Media, McGraw-Hill, New York (1957).

    MATH  Google Scholar 

  3. L. M. Brekhovskikh, Waves in Layered Media, Second Edition, Academic Press, New York (1980).

  4. B. L.N. Kennett, Seismic Wave Propagation in Stratified Media, Cambridge Univ. Press, Cambridge (1983).

    MATH  Google Scholar 

  5. J.E. White, Excitation and Propagation of Seismic Waves [Russian translation], Nedra, Moscow (1986).

    Google Scholar 

  6. L. A. Molotkov, Matrix Method in the Theory of Wave Propagation in Layered and Liquid Media [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  7. K. Aki and P. G. Richards, Quantitative Seismology, Theory and Methods, Vol. 1, Freeman, San Francisco (1980).

    Google Scholar 

  8. A.B. Razin and A. L. Sobisevich, Geoacoustics of Layered Media [in Russian], O.Yu. Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow (2012).

    Google Scholar 

  9. Yu.V. Petukhov, A.V. Razin, A. L. Sobisevich, and V. I. Kulikov, Seismoacoustic and Acoustic–Gravity Waves in Layered Media [in Russian], O.Yu. Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow (2013).

    Google Scholar 

  10. F.B. Jensen, W.A. Kuperman, M.B. Porter, and H. Schmidt, Computational Ocean Acoustics, Springer, New York (2011).

    Book  MATH  Google Scholar 

  11. K.H. Stokoe, G.R. Rix, and S. Nazarian, in: Proc. 12th Int. Conf. Soil Mech. Found. Engng, Rio de Janeiro, Brasil, August 13–18, 1989, Vol. 1, p. 331.

  12. C. B. Park, R.D. Miller, and J. Xia, Geophysics, 64, No. 3, 800 (1999).

    Article  ADS  Google Scholar 

  13. G. F. Miller and H. Pursey, in Proc. Roy. Soc. London A, 223, 521 (1954).

  14. S.Ya. Kogan, Izv. Akad. Nauk SSSR, Ser. Geofiz., 7, 1000 (1963).

    Google Scholar 

  15. J. Xia, C.B. Park, and R.D. Miller, Geophysics, 64, No. 3, 691 (1999).

    Article  ADS  Google Scholar 

  16. M. Maraschini, “A new approach for the inversion of Rayleigh and Scholte waves in site characterization,” Ph.D. thesis, Torino Politechnic University, Torino (2008).

  17. A. Konkov, A. Lebedev, and S. Manakov, in: Handbook of Geomathematics, Springer, Heidelberg (2014).

  18. S. M. Grudskii, S. S. Mikhalkovich, and A. I. Hil’ko, Acoust. Phys., 43, No. 5, 542 (1997).

    ADS  Google Scholar 

  19. D.A. Presnov, R.A. Zhostkov, V.A. Gusev, and A. S. Shurup, Acoust. Phys., 60, No. 4, 455 (2014).

    Article  ADS  Google Scholar 

  20. V. S. Averbakh, A.V. Lebedev, A. P. Maryshev, and V. I. Talanov, Acoust. Phys., 54, No. 4, 526 (2008).

    Article  ADS  Google Scholar 

  21. Yu.M. Zaslavsky and O. I. Mityakova, Akust. Zh., 38, No. 2, 296 (1992).

    Google Scholar 

  22. M.C. Junger and D. Feit, Sound, Structures and Their Interaction, Massachusetts Inst. of Technology, Boston (1986).

    MATH  Google Scholar 

  23. V. Korneev, L. Danilovskaya, S. Nakagawa, and G. Moridis, Geophysics, 79, No. 4, L33 (2014).

    Article  ADS  Google Scholar 

  24. P. V. Krauklis, Prikl. Matem. Mekh., 6, 1111 (1962).

    Google Scholar 

  25. E. Skudrzyk, Simple and Complex Vibratory Systems, Penn. State Univ. Press, Univ. Park (1968).

    MATH  Google Scholar 

  26. G. Mavko, T. Mukeji, and J. Dvorkin, The Rock Physics Handbook. Tools for Seismic Analysis in Porous Media, Cambridge University Press, Cambridge (2009).

    Book  Google Scholar 

  27. A. I. Konkov, A.V. Lebedev, and S.A. Manakov, J. Acoust. Soc. Amer., 138, No. 3, Pt. 2, 1938 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kon’kov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 4, pp. 320–332, April 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kon’kov, A.I., Lebedev, A.V. & Razin, A.V. Analysis of Surface Waves in an Elastic Medium with Aquifer. Radiophys Quantum El 59, 289–300 (2016). https://doi.org/10.1007/s11141-016-9697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9697-3

Navigation