Skip to main content
Log in

Multipactor discharge on a dielectric surface in the field of circularly polarized plane waves

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

The secondary-emission discharge (multipactor) on a dielectric surface irradiated by a plane TEM wave of circular polarization is analyzed theoretically. It is shown that interaction of electrons with the electromagnetic wave field can provide their return to the emission surface, which makes a multipactor possible even without any external static fields. Multipactor conditions for different reflection coefficients of the incident wave are found. The obtained results are used to estimate the throughput of the output window of a high-power vacuum microwave device. Specifically, it is established that decreasing the high-frequency field amplitude on the window surface when the mode of a partially standing wave is realized in the vicinity of the window does not always help raise its electric strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. T. Farnsworth, J. Franklin Inst., 210, 411 (1934).

    Article  Google Scholar 

  2. A. F. Aleksandrov, L. G. Blyakhman, S. Yu. Galuzo, et al., Relativistic High-Frequency Electronics [in Russian], Inst. Appl. Phys., USSR Acad. Sci., Gorky (1983), No. 3, p. 219.

    Google Scholar 

  3. N. F. Kovalev, V. E. Nechaev, M. I. Petelin, et al., IEEE Trans. Plasma Sci., 26, No. 3, 246 (1989).

    Article  ADS  Google Scholar 

  4. W. Weingarten, IEEE Trans. Electrical Insulation, 24, No. 6, 1005 (1989).

    Article  Google Scholar 

  5. E. Chojnacki, Phys. Rev. Spec. Topics Accel. Beams, 3, id. 032001 (2000).

  6. C. Kudsia, R. Cameron, and W.-C. Tang, IEEE Trans. Microwave Theory and Technique, 40, No. 6, 1133 (1992).

    Article  ADS  Google Scholar 

  7. N. Rozario, H. F. Lenzing, K. F. Reardon, et al., IEEE Trans. Microwave Theory and Technique, 42, No. 4, 558 (1994).

    Article  ADS  Google Scholar 

  8. A. Woode and J. Petit, ESA J., 14, No. 1, 467 (1990).

    ADS  Google Scholar 

  9. G. Francis and A. von Engel, Proc. Roy. Soc. London. Ser. A, 246, 143 (1953).

    Article  ADS  Google Scholar 

  10. A. J. Hatch and H. B. Williams, Phys. Rev., 112, No. 3, 681 (1958).

    Article  ADS  Google Scholar 

  11. D. A. Ganichev, V. A. Stansky, and S. A. Fridrikhov, Izv. Akad. Nauk SSSR, Ser. Fiz., 35, No. 2, 268 (1971).

    Google Scholar 

  12. L. V. Grishin and G. S. Luk’yanchikov, Zh. Tekh. Fiz., 46, No. 3, 536 (1976).

    Google Scholar 

  13. I. N. Slivkov, The High-Voltage Processes in Vacuum [in Russian], Énergoatomizdat, Moscow (1986).

    Google Scholar 

  14. J. R. M. Vaughan, IEEE Trans. Electr. Dev., 35, No. 7, 1172 (1988).

    Article  ADS  Google Scholar 

  15. R. A. Kishek, Y. Y. Lau, L. K. Ang, et al., Phys. Plasmas, 5, No. 5, 2120 (1998).

    Article  ADS  Google Scholar 

  16. S. Yamaguchi, Y. Saito, S. Anami, et al., IEEE Trans. Nucl. Sci., 39, 278 (1992).

    Article  ADS  Google Scholar 

  17. A. Neuber, J. Dickens, D. Hemmert, et al., IEEE Trans. Plasma Sci., 26, No. 3, 296 (1998).

    Article  ADS  Google Scholar 

  18. R. B. Anderson, W. D. Getty, M. L. Brake, et al., Rev. Sci. Instr., 72, No. 7, 3095 (2001).

    Article  ADS  Google Scholar 

  19. A. Valfells, L. K. Ang, Y. Y. Lau, et al., Phys. Plasmas, 7, No. 2, 750 (2000).

    Article  ADS  Google Scholar 

  20. H. C. Kim and J. P. Verboncoeur, Phys. Plasmas, 12, id. 123504 (2005).

  21. A. Sazontov, V. Semenov, M. Buyanova, et al., Phys. Plasmas, 12, id. 093501 (2005).

  22. H. C. Kim and J. P. Verboncoeur, Phys. Plasmas, 13, id. 123506 (2006).

  23. E. F. Vance, J. Appl. Phys., 34, No. 11, 3237 (1963).

    Article  ADS  Google Scholar 

  24. L. G. Blyakhman and V. E. Nechaev, Zh. Tekh. Fiz., 50, No 4, 720 (1980).

    Google Scholar 

  25. L. G. Blyakhman and V. E. Nechaev, Zh. Tekh. Fiz., 54, No. 11, 2163 (1984).

    Google Scholar 

  26. L. G. Blyakhman, M. A. Gorshkova, and V. E. Nechaev, Radiophys. Quantum Electron., 43, No. 11, 904 (2000).

    Article  Google Scholar 

  27. R. A. Kishek and Y. Y. Lau, Phys. Rev. Lett., 80, No. 1, 193 (1998).

    Article  ADS  Google Scholar 

  28. A. Bogdashov, G. Denisov, D. Lukovnikov, et al., IEEE Trans. Microwave Theory and Technique, 54, No. 12, 4130 (2006).

    Article  Google Scholar 

  29. G. S. Luk’yanchikov, Zh. Tekh. Fiz., 44, No. 9, 1922 (1974).

    Google Scholar 

  30. L. V. Grishin, A. A. Dorofeyuk, I. A. Kossyi, et al., “Dissipation of electromagnetic waves in a plasma,” in: Trudy FIAN [in Russian], Nauka, Moscow (1977), Vol. 92, p. 82.

    Google Scholar 

  31. A. Neuber, D. Hemmert, H. Krompholz, et al., J. Appl. Phys., 86, No. 3, 1724 (1999).

    Article  ADS  Google Scholar 

  32. M. N. Buyanova, V. E. Nechaev, and V. E. Semenov, in: Proc. XXII Sci.-Tech. Conf. “Vacuum Science and Engineering,” Sudak, September 2005 [in Russian], p. 109.

  33. V. Semenov, M. Buyanova, V. Nechaev, et al., in: Proc. MULCOPIM 2005, 12–15 September, ESTEC, Noordwijk, the Netherlands, p. 119.

  34. I. Kossyi and V. Semenov, in: Proc. MULCOPIM 2005, 12–15 September, ESTEC, Noordwijk, the Netherlands, p. 127.

  35. M. A. Miller, Zh. Éksp. Teor. Fiz., 35, No. 1 (7), 299 (1958).

    Google Scholar 

  36. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission [in Russian], Nauka, Moscow (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Buyanova.

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, Nos. 10–11, pp. 988–1003, October–November 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buyanova, M.N., Nechaev, V.E. & Semenov, V.E. Multipactor discharge on a dielectric surface in the field of circularly polarized plane waves. Radiophys Quantum El 50, 893–907 (2007). https://doi.org/10.1007/s11141-007-0083-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-007-0083-z

Keywords

Navigation