Skip to main content
Log in

Reducibility of matrix weights

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper, we discuss the notion of reducibility of matrix weights and introduce a real vector space \(\mathcal C_\mathbb R\) which encodes all information about the reducibility of W. In particular, a weight W reduces if and only if there is a nonscalar matrix T such that \(TW=WT^*\). Also, we prove that reducibility can be studied by looking at the commutant of the monic orthogonal polynomials or by looking at the coefficients of the corresponding three-term recursion relation. A matrix weight may not be expressible as direct sum of irreducible weights, but it is always equivalent to a direct sum of irreducible weights. We also establish that the decompositions of two equivalent weights as sums of irreducible weights have the same number of terms and that, up to a permutation, they are equivalent. We consider the algebra of right-hand-side matrix differential operators \(\mathcal D(W)\) of a reducible weight W, giving its general structure. Finally, we make a change of emphasis by considering the reducibility of polynomials, instead of reducibility of matrix weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldenhoven, A., Koelink, E., de los Ríos, A.M.: Matrix-valued little \(q\)-Jacobi polynomials. J. Approx. Theory 193, 164–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bochner, S.: Über Sturm–Liouvillesche Polynomsysteme. Math. Z. 29, 730–736 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cafasso, M., de la Iglesia, M.D.: Non-commutative Painlevé equations and Hermite-type matrix orthogonal polynomials. Commun. Math. Phys. 326(2), 559–583 (2014)

    Article  MATH  Google Scholar 

  4. Castro, M.M., Grünbaum, F.A.: Orthogonal matrix polynomials satisfying first order differential equations: a collection of instructive examples. J. Nonlinear Math. Phys. 12(2), 63–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castro, M.M., Grünbaum, F.A.: The algebra of differential operators associated to a given family of matrix valued orthogonal polynomials: five instructive examples. Int. Math. Res. Not. 27(2), 1–33 (2006)

    MATH  Google Scholar 

  6. Chevalley, C.: Theory of Lie Groups. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  7. de la Iglesia, M.D.: Some examples of matrix-valued orthogonal functions having a differential and an integral operator as eigenfunctions. J. Approx. Theory 163(5), 663–687 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durán, A.J.: Matrix inner product having a matrix symmetric second-order differential operator. Rocky Mt. J. Math. 27(2), 585–600 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Durán, A.J., de la Iglesia, M.D.: Some examples of orthogonal matrix polynomials satisfying odd order differential equations. J. Approx. Theory 150(2), 153–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durán, A.J., Grünbaum, F.A.: Orthogonal matrix polynomials satisfying second-order differential equations. Int. Math. Res. Not. 10, 461–484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Durán, A.J., Grünbaum, F.A.: A characterization for a class of weight matrices with orthogonal matrix polynomials satisfying second-order differential equations. Int. Math. Res. Not. 23, 1371–1390 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Förster, K.-H., Nagy, B.: Equivalences of matrix polynomials. Acta Sci. Math. 80(1–2), 233–260 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Grünbaum, F.A., de la Iglesia, M.D., Martínez, A.: Properties of matrix orthogonal polynomials via their Riemann–Hilbert characterization, SIGMA 7, Paper 098, 31 pp (2011)

  14. Grünbaum, F.A., Pacharoni, I., Tirao, J.: Matrix valued spherical functions associated to the complex projective plane. J. Funct. Anal. 188(2), 350–441 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grünbaum, F.A., Pacharoni, I., Tirao, J.: Matrix valued orthogonal polynomials of the Jacobi type. Indag. Math. 14(3–4), 253–366 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Grünbaum, F.A., Pacharoni, I., Tirao, J.: Matrix valued orthogonal polynomials of Jacobi type: the role of group representation theory. Ann. Inst. Fourier 55(6), 2051–2068 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grünbaum, F.A.: Matrix valued Jacobi polynomials. Bull. Sci. Math. 127(3), 207–214 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grünbaum, F.A., Tirao, J.: The algebra of differential operators associated to a weight matrix. Integr. Equ. Oper. Theory 58(4), 449–475 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heckman, G., van Pruijssen, M.: Matrix Valued Orthogonal Polynomials for Gelfand Pairs of Rank One. Tohoku Math. J. 68(3), (2016)

  20. Hoffman, K., Kunze, R.: Linear Algebra. Prentice-Hall, Englewood Cliffs (1965)

    MATH  Google Scholar 

  21. Koelink, E., Román, P.: Orthogonal vs. non-orthogonal reducibility of matrix-valued measures, arXiv:1509.06143 (2015)

  22. Krein, M.G.: Infinite j-matrices and a matrix moment problem. Dokl. Akad. Nauk SSSR 69(2), 125–128 (1949)

    MathSciNet  Google Scholar 

  23. Krein, M.G.: Fundamental aspects of the representation theory of hermitian operators with deficiency index \((m, m)\). AMS Trans. Ser. 2(97), 75–143 (1971)

    MATH  Google Scholar 

  24. Koelink, E., van Pruijssen, M., Román, P.: Matrix-valued orthogonal polynomials related to \(({\rm SU}(2)\times {\rm SU}(2),{\rm diag})\). Int. Math. Res. Not. IMRN 1(24), 5673–5730 (2012)

    Article  MATH  Google Scholar 

  25. Miranian, L.: Matrix-valued orthogonal polynomials on the real line: some extensions of the classical theory. J. Phys. A 38(25), 5731–5749 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pacharoni, I., Tirao, J.: Three term recursion relation for spherical functions associated to the complex hyperbolic plane. J. Lie Theory 17(4), 791–828 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Pacharoni, I., Tirao, J., Zurrián, I.: Spherical functions associated with the three-dimensional sphere. Ann. Mat. Pura Appl. (4) 193(6), 1727–1778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tirao, J.: Spherical functions. Rev. Un. Mat. Argent. 28, 75–98 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Tirao, J.: The matrix-valued hypergeometric equation. Proc. Natl. Acad. Sci. USA 100(14), 8138–8141 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tirao, J.: The algebra of differential operators associated to a weight matrix: a first example. In: Polcino Milies, C. (ed.) Proceedings of Groups, Algebras and Applications. XVIII Latin American Algebra Colloquium, São Pedro, 3–8 Aug 2009. American Mathematical Society (AMS), Providence, RI, Contemp. Math. vol. 537, pp. 291–324 (2011)

  31. Tirao, J.A., Zurrián, I.: Spherical functions: the spheres versus the projective spaces. J. Lie Theory 24(1), 147–157 (2014)

    MathSciNet  MATH  Google Scholar 

  32. van Pruijssen, M., Román, P.: Matrix valued classical pairs related to compact Gelfand pairs of rank one. SIGMA 10, Paper 113, 28 pp (2014)

  33. Zurrián, I.: The Algebra of Differential Operators for a Gegenbauer Weight Matrix. Int. Math. Res. Not. 2016, 1–29 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Zurrián.

Additional information

This paper was partially supported by CONICET PIP 112-200801-01533 and by the program Oberwolfach Leibniz Fellows 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirao, J., Zurrián, I. Reducibility of matrix weights. Ramanujan J 45, 349–374 (2018). https://doi.org/10.1007/s11139-016-9834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9834-9

Keywords

Mathematics Subject Classification

Navigation