Skip to main content
Log in

Modular forms, hypergeometric functions and congruences

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let

$$A_k(n)=\sum_{\substack{i_1,i_2,\ldots, i_k \ge0\\ i_1+i_2+\cdots+ i_k=n}}\binom{2i_1}{i_1}^2 \binom{2i_2}{i_2}^2\cdots \binom{2i_k}{i_k}^2, \quad \textrm{for } k,n\in\mathbb{N}. $$

Using the theory of Stienstra and Beukers (Math. Ann., 271:269–304, 1985), we prove that the numbers A 3(n) and A 3(n−1)−16A 3(n−2) satisfy three term congruence relations similar to those satisfied by Apery numbers. Moreover, for k≥3 and p prime, we prove divisibility by p of some simple linear combinations of the numbers A k (n), for \(n\in \mathbb{N}\).

To obtain this, we study the arithmetic properties of the Fourier coefficients of certain holomorphic and weakly holomorphic modular forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beukers, F.: Another congruence for the Apéry numbers. J. Number Theory 25, 201–210 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bol, G.: Invarianten linearer Differentialgleichungen. Abh. Math. Semin. Univ. Hamb. 16, 1–28 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  3. Jarvis, F., Verrill, H.A.: Supercongruences for the Catalan–Larcombe–French numbers. Ramanujan J. 22, 171–186 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kazalicki, M., Scholl, A.J.: Modular forms, de Rham cohomology and congruences. arXiv:1301.5876

  5. Kontsevich, M., Zagier, D.: Periods, in Mathematics Unlimited—2001 and Beyond, pp. 771–808. Springer, Berlin (2001)

    Google Scholar 

  6. McCarthy, D., Osburn, R., Sahu, B.: Arithmetic properties for Apéry-like numbers. Preprint. arXiv:0906.3413

  7. Osburn, R., Sahu, B.: Congruences via modular forms. Proc. Am. Math. Soc. 139, 2375–2381 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan, vol. 11. Iwanami Shoten, Tokyo (1971). Kanô Memorial Lectures, No. 1

    MATH  Google Scholar 

  9. Stienstra, J., Beukers, F.: On the Picard–Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Math. Ann. 271, 269–304 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Verrill, H.A.: Congruences related to modular forms. Int. J. Number Theory 6, 1367–1390 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zagier, D.: Integral solutions of Apéry-like recurrence equations. In: Groups and Symmetries. CRM Proc. Lecture Notes, vol. 47, pp. 349–366. Am. Math. Soc., Providence (2009)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Max Planck Institute for Mathematics in Bonn for the excellent working environment and the financial support that they provided me during my stay in March of 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matija Kazalicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazalicki, M. Modular forms, hypergeometric functions and congruences. Ramanujan J 34, 1–9 (2014). https://doi.org/10.1007/s11139-013-9477-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-013-9477-z

Keywords

Mathematics Subject Classification

Navigation