Skip to main content
Log in

On quintic Eisenstein series and points of order five of the Weierstrass elliptic functions

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We employ a new constructive approach to study modular forms of level five by evaluating the Weierstrass elliptic functions at points of order five on the period parallelogram. A significant tool in our analysis is a nonlinear system of coupled differential equations analogous to Ramanujan’s differential system for the Eisenstein series on SL(2,ℤ). The resulting relations of level five may be written as a coupled system of differential equations for quintic Eisenstein series. Some interesting combinatorial and analytic consequences result, including an alternative proof of a famous identity of Ramanujan involving the Rogers–Ramanujan continued fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976).

    MATH  Google Scholar 

  2. Bannai, E., Koike, M., Munemasa, A., Sekiguchi, J.: Some results on modular forms—subgroups of the modular group whose ring of modular forms is a polynomial ring. In: Groups and Combinatorics—In Memory of Michio Suzuki. Adv. Stud. Pure Math., vol. 32, pp. 245–254. Math. Soc. Japan, Tokyo (2001)

    Google Scholar 

  3. Berndt, B.C.: Ramanujan’s Notebooks. Part III. Springer, New York (1991)

    Book  MATH  Google Scholar 

  4. Berndt, B.C., Chan, H.H., Son, S.H.: Eisenstein series in Ramanujan’s lost notebook. Ramanujan J. 4, 81–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borwein, J.M., Borwein, P.B.: A remarkable cubic mean iteration. In: Computational Methods and Function Theory, Valparaiso, 1989. Lecture Notes in Math., vol. 1435, pp. 27–31. Springer, Berlin (1990)

    Chapter  Google Scholar 

  6. Borwein, J.M., Borwein, P.B.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 323(2), 691–701 (1991)

    Article  MATH  Google Scholar 

  7. Borwein, J.M., Borwein, P.B.: Pi and the AGM. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 4. Wiley, New York (1998). A study in analytic number theory and computational complexity, Reprint of the 1987 original, A Wiley-Interscience Publication

    MATH  Google Scholar 

  8. Borwein, J.M., Borwein, P.B., Garvan, F.G.: Some cubic modular identities of Ramanujan. Trans. Am. Math. Soc. 343(1), 35–47 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruinier, J.H., van der Geer, G., Harder, G., Zagier, D.: The 1-2-3 of Modular Forms. Universitext. Springer, Berlin, (2008). Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004, Edited by Kristian Ranestad

    MATH  Google Scholar 

  10. Chan, H.H., Liu, Z.-G.: Elliptic functions to the quintic base. Pac. J. Math. 226(1), 53–64 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, H.H., Chan, S.H., Liu, Z.-G.: The Rogers-Ramanujan continued fraction and a new Eisenstein series identity. J. Number Theory 129(7), 1786–1797 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chandrasekharan, K.: Elliptic Functions. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281. Springer, Berlin, (1985)

    MATH  Google Scholar 

  13. Cooper, S., Toh, P.C.: Quintic and septic Eisenstein series. Ramanujan J. 19(2), 163–181 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diamond, F., Shurman, J.: A First Course in Modular Forms. Graduate Texts in Mathematics, vol. 228. Springer, New York (2005)

    MATH  Google Scholar 

  15. Duke, W.: Continued fractions and modular functions. Bull., New Ser., Am. Math. Soc. 42(2), 137–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fricke, R., Klein, F.: Vorlesungen über die Theorie der elliptischen Modulfunktionen, vol. 1. Teubner, Leipzig (1890)

    Google Scholar 

  17. Frobenius, G., Stickelberger, L.: Über die addition und multiplication der elliptischen functionen. Appl. Math. Lett. 88, 146–184 (1880)

    Google Scholar 

  18. Garvan, F., Kim, D., Stanton, D.: Cranks and t-cores. Invent. Math. 101(1), 1–17 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hahn, H.: Eisenstein series associated with Γ0(2). Ramanujan J. 15, 235–257 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hardy, G.H.: Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work. Chelsea Publishing Company, New York (1959)

    MATH  Google Scholar 

  21. Huber, T.: Coupled systems of differential equations for modular forms of level n. In: Ramanujan Rediscovered: Proceedings of a Conference on Elliptic Functions, Partitions, and q-Series in Memory of K. Venkatachaliengar, pp. 139–146. The Ramanujan Mathematical Society, Bangalore (2009)

    Google Scholar 

  22. Huber, T.: Differential equations for cubic theta functions. Int. J. Numer. Theory 7(7), 1945–1957 (2011)

    Article  MATH  Google Scholar 

  23. Klein, F.: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. Birkhäuser, Basel (1993). Reprint of the 1884 original, Edited, with an introduction and commentary by Peter Slodowy

    MATH  Google Scholar 

  24. Maier, R.: Nonlinear differential equations satisfied by certain classical modular forms. Manuscr. Math., 1–42 (2010). doi:10.1007/s00229-010-0378-9

  25. Ramamani, V.: Some identities conjectured by Srinivasa Ramanujan in his lithographed notes connected with partition theory and elliptic modular functions—their proofs—interconnections with various other topics in the theory of numbers and some generalization. Ph.D. Thesis, University of Mysore (1970)

  26. Ramamani, V.: On some algebraic identities connected with Ramanujan’s work. In: Ramanujan International Symposium on Analysis, Pune, 1987, pp. 277–291. Macmillan of India, New Delhi (1989)

    Google Scholar 

  27. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa Publishing House, New Delhi (1988)

    MATH  Google Scholar 

  28. Ramanujan, S.: On certain arithmetical functions [Trans. Camb. Philos. Soc. 22(9), 159–184 (1916)]. In: Collected Papers of Srinivasa Ramanujan, pp. 136–162. AMS Chelsea Publ., Providence (2000)

    Google Scholar 

  29. Ramanujan, S.: Some properties of p(n), the number of partitions of n [Proc. Camb. Philos. Soc. 19, 207–210 (1919)]. In: Collected Papers of Srinivasa Ramanujan, pp. 210–213. AMS Chelsea Publ., Providence (2000)

    Google Scholar 

  30. Rogers, L.J.: Second memoir on the expansion of certain infinite products. Proc. Lond. Math. Soc. 25, 318–343 (1894)

    Article  Google Scholar 

  31. Schoeneberg, B.: Elliptic Modular Functions: An Introduction. Springer, New York (1974). Translated from the German by J.R. Smart and E.A. Schwandt, Die Grundlehren der mathematischen Wissenschaften, vol. 203

    MATH  Google Scholar 

  32. Serre, J.-P.: A Course in Arithmetic. Springer, New York (1973). Translated from the French, Graduate Texts in Mathematics, No. 7

    MATH  Google Scholar 

  33. Watson, G.N.: Theorems stated by Ramanujan (VII): theorems on continued fractions. J. Lond. Math. Soc. 4, 39–48 (1929)

    Article  MATH  Google Scholar 

  34. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions, 4th edn., reprinted. Cambridge University Press, New York (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, T. On quintic Eisenstein series and points of order five of the Weierstrass elliptic functions. Ramanujan J 28, 273–308 (2012). https://doi.org/10.1007/s11139-011-9368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-011-9368-0

Keywords

Mathematics Subject Classification (2000)

Navigation