Skip to main content
Log in

A generalization of Siegel’s method

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We extend C.L. Siegel’s method of proving the Dedekind-eta function transformation by integrating some selected functions over a positively oriented polygon, generalizing Siegel’s integration over a parallelogram. As consequences, we obtain a generalization of the Dedekind-eta function transformation and generalizations of other transformation formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M.: On the Lerch zeta function. Pac. J. Math. 1, 161–167 (1951)

    MATH  MathSciNet  Google Scholar 

  2. Berndt, B.C.: Periodic Bernoulli numbers, summation formulas and applications. In: Askey, R.A. (ed.) Theory and Applications of Special Functions, pp. 143–189. Academic Press, San Diego (1975)

    Google Scholar 

  3. Berndt, B.C.: Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mt. J. Math. 7, 147–189 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berndt, B.C.: Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303/304, 332–365 (1978)

    MathSciNet  Google Scholar 

  5. Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer, New York (1989)

    MATH  Google Scholar 

  6. Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer, New York (1991)

    MATH  Google Scholar 

  7. Berndt, B.C.: Ramanujan’s Notebooks, Part IV. Springer, New York (1994)

    MATH  Google Scholar 

  8. Berndt, B.C., Venkatachaliengar, K.: On the transformation formula for the Dedekind eta-function. In: Garvan, F.G. Ismail, M.E.H. (eds.) Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Developments in Math., vol. 2, pp. 73–77. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  9. Bradley, D.M.: Series acceleration formulas for Dirichlet series with periodic coefficients. Ramanujan J. 6, 331–346 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grosswald, E.: Comments on some formulae of Ramanujan. Acta Arith. 21, 25–34 (1972)

    MATH  MathSciNet  Google Scholar 

  11. Hardy, G.H.: A formula of Ramanujan. J. Lond. Math. Soc. 3, 238–240 (1928)

    Article  Google Scholar 

  12. Hardy, G.H.: Collected Papers, vol. 4. Clarendon, Oxford (1969)

    Google Scholar 

  13. Knopp, M.I.: Modular Functions in Analytic Number Theory, 2nd edn. Chelsea, New York (1993)

    MATH  Google Scholar 

  14. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms, 2nd edn. Springer, New York (1993)

    MATH  Google Scholar 

  15. Kongsiriwong, S.: A simple proof of the theta inversion formula (to appear)

  16. Lagrange, J.: Une formule sommatoire et ses applications. Bull. Sci. Math. 84(2), 105–110 (1960)

    MATH  MathSciNet  Google Scholar 

  17. Malurkar, S.L.: On the application of Herr Mellin’s integrals to some series. J. Indian Math. Soc. 16, 130–138 (1925/26)

    Google Scholar 

  18. Nanjundiah, T.S.: Certain summations due to Ramanujan, and their generalisations. Proc. Indian Acad. Sci. Sec. A 34, 215–228 (1951)

    MATH  MathSciNet  Google Scholar 

  19. Ramanujan, S.: On certain trigonometrical sums and their applications in the theory of numbers. Trans. Camb. Philos. Soc. 22, 259–276 (1918)

    Google Scholar 

  20. Ramanujan, S.: Notebooks (2 volumes). Tata Institute of Fundamental Research, Bombay (1957)

    Google Scholar 

  21. Ramanujan, S.: Collected Papers. Chelsea, New York (1962). American Mathematical Society, Providence, 2000

    Google Scholar 

  22. Rao, M.B., Ayyar, M.V.: On some infinite series and products, Part I. J. Indian Math. Soc. 15, 150–162 (1923/24)

    Google Scholar 

  23. Siegel, C.L.: A simple proof of \(\eta(-1/\tau)=\eta(\tau)\sqrt{\tau/i}\) . Mathematika 1, 4 (1954)

    Article  MathSciNet  Google Scholar 

  24. Siegel, C.L.: Advanced Analytic Number Theory. Tata Institute of Fundamental Research, Bombay (1980)

    MATH  Google Scholar 

  25. Schlömilch, O.: Ueber einige unendliche Reihen. Ber. Verh. K. Sachs. Ges. Wiss. Leipz. 29, 101–105 (1877)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarachai Kongsiriwong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kongsiriwong, S. A generalization of Siegel’s method. Ramanujan J 20, 1–24 (2009). https://doi.org/10.1007/s11139-009-9167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-009-9167-z

Keywords

Mathematics Subject Classification (2000)

Navigation