Skip to main content
Log in

Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidance on whether MI for multi-attribute questionnaires, such as the EQ-5D-3L, should be carried out at domain or at summary score level. In this paper, we evaluated the impact of imputing individual domains versus imputing index values to deal with missing EQ-5D-3L data using a simulation study and developed recommendations for future practice.

Methods

We simulated missing data in a patient-level dataset with complete EQ-5D-3L data at one point in time from a large multinational clinical trial (n = 1,814). Different proportions of missing data were generated using a missing at random (MAR) mechanism and three different scenarios were studied. The performance of using each method was evaluated using root mean squared error and mean absolute error of the actual versus predicted EQ-5D-3L indices.

Results

In large sample sizes (n > 500) and a missing data pattern that follows mainly unit non-response, imputing domains or the index produced similar results. However, domain imputation became more accurate than index imputation with pattern of missingness following an item non-response. For smaller sample sizes (n < 100), index imputation was more accurate. When MI models were misspecified, both domain and index imputations were inaccurate for any proportion of missing data.

Conclusions

The decision between imputing the domains or the EQ-5D-3L index scores depends on the observed missing data pattern and the sample size available for analysis. Analysts conducting this type of exercises should also evaluate the sensitivity of the analysis to the MAR assumption and whether the imputation model is correctly specified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Missing data due to dropouts for informative reasons are cases when the participant fails to complete a questionnaire as a result of their severity of their illness, death or other known reason. Non-responders occur when the participant does not respond to a questionnaire at one or multiple time points, which creates different missing data patterns in a dataset. In cross-sectional studies, the main missing data patterns are unit non-response when the participant fails to complete all the items within a questionnaire, and item non-response when the participant fails to complete some of the items within a questionnaire. In longitudinal studies, the participant may drop out before the end of the study and do not return creating a monotone missing data pattern.

References

  1. Briggs, A., Clark, T., Wolstenholme, J., & Clarke, P. (2003). Missing....presumed at random: Cost-analysis of incomplete data. Health Economics, 12(5), 377–392.

    Article  PubMed  Google Scholar 

  2. Manca, A., & Palmer, S. (2005). Handling missing data in patient-level cost-effectiveness analysis alongside randomised clinical trials. Applied Health Economics and Health Policy, 4(2), 65–75.

    Article  PubMed  Google Scholar 

  3. Burton, A., Billingham, L. J., & Bryan, S. (2007). Cost-effectiveness in clinical trials: Using multiple imputation to deal with incomplete cost data. Clinical Trials, 4(2), 154–161.

    Article  PubMed  Google Scholar 

  4. Grieve, R., Cairns, J., & Thompson, S. G. (2010). Improving costing methods in multicentre economic evaluation: The use of multiple imputation for unit costs. Health Economics, 19(8), 939–954.

    Article  PubMed  Google Scholar 

  5. Oostenbrink, J. B., & Al, M. J. (2005). The analysis of incomplete cost data due to dropout. Health Economics, 14(8), 763–776.

    Article  PubMed  Google Scholar 

  6. Yu, L. M., Burton, A., & Rivero-Arias, O. (2007). Evaluation of software for multiple imputation of semi-continuous data. Statistical Methods in Medical Research, 16(3), 243–258.

    Article  PubMed  Google Scholar 

  7. Faria, R., Gomes, M., Epstein, D., & White, I. R. (2014). A guide to handling missing data in cost-effectiveness analysis conducted within randomised controlled trials. PharmacoEconomics. doi:10.1007/s40273-014-0193-3.

  8. Little, R. J. & D. B. Rubin. (2002). Statistical analysis with missing data. 2nd ed. Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley.

  9. Noble, S. M., Hollingworth, W., & Tilling, K. (2012). Missing data in trial-based cost-effectiveness analysis: The current state of play. Health Economics, 21(2), 187–200.

    Article  PubMed  Google Scholar 

  10. Wood, A. M., White, I. R., & Thompson, S. G. (2004). Are missing outcome data adequately handled? A review of published randomized controlled trials in major medical journals. Clinical Trials, 1(4), 368–376.

    Article  PubMed  Google Scholar 

  11. Eekhout, I., de Boer, R. M., Twisk, J. W. R., de Vet, H. C. W., & Heymans, M. W. (2012). Missing data: A systematic review of how they are reported and handled. Epidemiology, 23(5), 729–732.

    Article  PubMed  Google Scholar 

  12. EuroQol, G. (1990). EuroQol—a new facility for the measurement of health-related quality of life. Health Policy, 16, 199–208.

    Article  Google Scholar 

  13. Brooks, R. (1996). EuroQol: The current state of play. Health Policy, 37(1), 53–72.

    Article  CAS  PubMed  Google Scholar 

  14. Horsman, J., Furlong, W., Feeny, D., & Torrance, G. (2003). The health utilities index (HUI): Concepts, measurement properties and applications. Health and Quality of Life Outcomes, 1, 54.

    Article  PubMed Central  PubMed  Google Scholar 

  15. National Institute for Health and Care Excellence. (2013). Guide to the methods of technology appraisal. London: National Institute for Health and Care Excellence.

    Google Scholar 

  16. Ratcliffe, J., Young, T., Longworth, L., & Buxton, M. (2005). An assessment of the impact of informative dropout and nonresponse in measuring health-related quality of life using the EuroQol (EQ-5D) descriptive system. Value Health, 8(1), 53–58.

    Article  PubMed  Google Scholar 

  17. Blough, D. K., Ramsey, S., Sullivan, S. D., & Yusen, R. (2009). The impact of using different imputation methods for missing quality of life scores on the estimation of the cost-effectiveness of lung-volume-reduction surgery. Health Economics, 18(1), 91–101.

    Article  PubMed  Google Scholar 

  18. Szende, A., M. Oppe, & N. Devlin.(2007). EQ-5D value sets: Inventory, comparative review and user guide. A. Szende, M. Oppe, and N. Devlin. (Eds.) Dordrecht: Springer.

  19. StataCorp. Stata Statistical Software. (2011). Stata Press: College Station. TX: StataCorp LP.

  20. Molyneux, A., Kerr, R., Stratton, I., Sandercock, P., Clarke, M., Shrimpton, J., et al. (2002). International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: A randomised trial. Lancet, 360(9342), 1267–1274.

    Article  PubMed  Google Scholar 

  21. Jennett, B., & Bond, M. (1975). Assessment of outcome after severe brain damage. Lancet, 1(7905), 480–484.

    Article  CAS  PubMed  Google Scholar 

  22. van Swieten, J. C., Koudstaal, P. J., Visser, M. C., Schouten, H. J., & van Gijn, J. (1988). Interobserver agreement for the assessment of handicap in stroke patients. Stroke, 19(5), 604–607.

    Article  PubMed  Google Scholar 

  23. EuroQol Research Foundation (2014). Available from http://www.euroqol.org/. [Accessed 14 September 2014].

  24. Van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76(12), 1049–1064.

    Article  Google Scholar 

  25. Fairbank, J., Frost, H., Wilson-MacDonald, J., Yu, L. M., Barker, K., & Collins, R. (2005). Spine stabilisation trial. Randomised controlled trial to compare surgical stabilisation of the lumbar spine with an intensive rehabilitation programme for patients with chronic low back pain: The MRC spine stabilisation trial. BMJ, 330(7502), 1233.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Trial Group, K. A. T. (2009). The Knee Arthroplasty Trial (KAT) design features, baseline characteristics, and two-year functional outcomes after alternative approaches to knee replacement. The Journal of Bone and Joint Surgery, 91(1), 134–141.

    Article  Google Scholar 

  27. Rivero-Arias, O., Gray, A., Frost, H., Lamb, S. E., & Stewart-Brown, S. (2006). Cost-utility analysis of physiotherapy treatment compared with physiotherapy advice in low back pain. Spine, 31(12), 1381–1387.

    Article  PubMed  Google Scholar 

  28. Kendrick, T., Simons, L., Mynors-Wallis, L., Gray, A., Lathlean, J., Pickering, R., et al. (2006). Cost-effectiveness of referral for generic care or problem-solving treatment from community mental health nurses, compared with usual general practitioner care for common mental disorders: Randomised controlled trial. British Journal of Psychiatry, 189, 50–59.

    Article  CAS  PubMed  Google Scholar 

  29. Horton, N. J., & Kleinman, K. P. (2007). Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models. American Statistician, 61(1), 79–90.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Harel, O., & Zhou, X. H. (2007). Multiple imputation: Review of theory, implementation and software. Statistics in Medicine, 26(16), 3057–3077.

    Article  PubMed  Google Scholar 

  31. White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30(4), 377–399.

    Article  PubMed  Google Scholar 

  32. Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.

    Google Scholar 

  33. Efron, B. (1979). The 1977 rietz lecture—bootstrap methods—another look at the Jackknife. The annals of Statistics, 7(1), 1–26.

  34. Kind, P., Hardman, G., & Macran, S. (1999). UK population norms for EQ-5D. UK: Centre for Health Economics, University of York.

    Google Scholar 

  35. Janssen, M. F., Pickard, A. S., Golicki, D., Gudex, C., Niewada, M., Scalone, L., et al. (2013). Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: A multi-country study. Quality of Life Research, 22(7), 1717–1727.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Konig, H. H., Born, A., Gunther, O., Matschinger, H., Heinrich, S., Riedel-Heller, S. G., et al. (2010). Validity and responsiveness of the EQ-5D in assessing and valuing health status in patients with anxiety disorders. Health and Quality of Life Outcomes, 8, 47.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Long, J. S. (1997). Regression models for categorical and limited dependent variables. London: Sage.

    Google Scholar 

  38. Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical Society. Series B-Statistical Methodology, 31(2), 350–371.

    Google Scholar 

  39. Carpenter, J. R., Kenward, M. G., & White, I. R. (2007). Sensitivity analysis after multiple imputation under missing at random: A weighting approach. Statistical Methods in Medical Research, 16(3), 259–275.

    Article  PubMed  Google Scholar 

  40. Herdman, M., Gudex, C., Lloyd, A., Janssen, M., Kind, P., Parkin, D., et al. (2011). Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of Life Research, 20(10), 1727–1736.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the ISAT Collaborative Group for providing the data for this methodological work. ISAT was supported by grants from: The Medical Research Council, UK; Programme Hospitalier de Recherche Clinique 1998 of the French Ministry of Health (AOM 98150) sponsored by Assistance Publique-Hôpitaux de Paris (AP-HP); the Canadian Institutes of Health Research; and the Stroke Association of the UK. An early version of this paper was presented in the 83rd Health Economists’ Study Group (HESG) at the University of Warwick and we are grateful to Lazaros Andronis for discussing the manuscript and providing feedback and useful suggestions. This report is independent research arising from a NIHR Research Methods Fellowship, Claire Simons MET-12-15, supported by the National Institute for Health Research. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

Conflict of interest

Oliver Rivero-Arias discloses that he is a member of the EuroQol Research Foundation.

Ethical standard

All human studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave informed consent prior to their inclusion in the ISAT study.

Funding

The work reported in this article was not funded by a specific grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Rivero-Arias.

Additional information

Claire L. Simons and Oliver Rivero-Arias are joint lead authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simons, C.L., Rivero-Arias, O., Yu, LM. et al. Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?. Qual Life Res 24, 805–815 (2015). https://doi.org/10.1007/s11136-014-0837-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-014-0837-y

Keywords

Navigation