Skip to main content

Advertisement

Log in

Joint modeling of longitudinal health-related quality of life data and survival

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

In cancer research, outcome measures may co-vary. Treatment and treatment related impairment of health-related quality of life (HRQoL) may affect survival. When these effects are analyzed separately, bias may arise. Therefore, we investigated the combined effect of treatment and longitudinally measured HRQoL on survival.

Methods

Patients with anaplastic oligodendrogliomas (n = 288) who were randomized (EORTC 26951) to radiotherapy (RT) alone or RT plus procarbazine, lomustine, and vincristine (PCV) chemotherapy were analyzed. HRQoL [appetite loss (AP)] was assessed with the EORTC QLQ-C30. We compared survival results from different analysis strategies: Cox model with treatment only [model 1 (M1)] or with treatment and time-dependent AP score [model 2 (M2)] and the joint model combining longitudinal AP score and survival [model 3 (M3)].

Results

The estimated hazard ratio (HR) for RT plus PCV was 0.76 (95 % CI 0.58–1.00) for M1, 0.72 (0.55–0.96) for M2, and 0.69 (0.52–0.92) for M3. This corresponds to a lower risk of death of 24 % in M1, 28 % in M2, and 31 % in M3, for patients treated with RT plus PCV chemotherapy. AP resulted in an increased risk of death, with estimated HR of 1.06 (1.01–1.12) for M2 and 1.13 (1.03–1.23) for M3: Every 10-point increase of AP resulted in a 13 % increased risk of death in M3 as compared to 6 % in M2.

Conclusion

Part of the survival benefit of treatment with RT plus PCV chemotherapy can be masked by the negative effect that this treatment has on patients’ HRQoL. In our study, up to 7 % of the theoretical treatment efficacy was lost when AP was not adjusted through joint modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gotay, C. C., Kawamoto, C. T., Bottomley, A., & Efficace, F. (2008). The prognostic significance of patient-reported outcomes in cancer clinical trials. Journal of Clinical Oncology, 26, 1355–1363.

    Article  PubMed  Google Scholar 

  2. Quinten, C., Coens, C., Mauer, M., et al. (2009). Baseline quality of life as a prognostic indicator of survival: A meta-analysis of individual patient data from EORTC clinical trials. Lancet, 10, 865–871.

    Article  PubMed  Google Scholar 

  3. Eton, D. T., Fairclough, D. L., Cella, D., Yount, S. E., Bonomi, P., & Johnson, D. H. (2003). Early change in patient-reported health during lung cancer chemotherapy predicts clinical outcomes beyond those predicted by baseline report: Results from Eastern Cooperative Oncology Group Study 5592. Journal of Clinical Oncology, 21, 1536–1543.

    Article  PubMed  Google Scholar 

  4. Deslandes, E., & Chevret, S. (2010). Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: Application to ICU data. BMC Medical Research Methodology, 10, 69.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Wu, L., Liu, W., Yi, G. Y., & Huang, Y. (2012). Analysis of longitudinal and survival data: Joint modeling, inference methods, and issues. Journal of Probability and Statistics, 2012, 17. doi:10.1155/2012/640153.

  6. Ibrahim, J. G., Chu, H., & Chen, L. M. (2010). Basic concepts and methods for joint models of longitudinal and survival data. Journal of Clinical Oncology, 28, 2796–2801.

    Article  PubMed  Google Scholar 

  7. Rizopoulos, D. (2012). Joint models for longitudinal and time-to-event data: With applications in R. London: Chapman & Hall/CRC Biostatistics Series.

    Book  Google Scholar 

  8. Wu, M., & Caroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modelling the censoring process. Biometrics, 44, 175–188.

    Article  Google Scholar 

  9. Hogan, J. W., & Laird, N. M. (1997). Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine, 16, 259–272.

    Article  CAS  PubMed  Google Scholar 

  10. Faucett, C. L., & Thomas, D. C. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine, 15, 1663–1685.

    Article  CAS  PubMed  Google Scholar 

  11. Henderson, R., Diggle, P., & Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics, 1, 465–480.

    Article  CAS  PubMed  Google Scholar 

  12. Song, X., Davidian, M., & Tsiatis, A. (2002). An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics, 3, 511–528.

    Article  PubMed  Google Scholar 

  13. Touloumi, G., Babiker, A. G., Kenward, M. G., Pocock, S. J., & Darbyshire, J. H. (2003). A comparison of two methods for the estimation of precision with incomplete longitudinal data, jointly modelled with a time-to-event outcome. Statistics in Medicine, 22, 3161–3175.

    Article  CAS  PubMed  Google Scholar 

  14. Jacqmin-Gadda, H., Thiebaut, R., & Dartigues, J. F. (2004). Joint modeling of quantitative longitudinal data and censored survival time. RESP, 52, 502–510.

    CAS  Google Scholar 

  15. Thiebaut, R., Jacqmin-Gadda, H., Babiker, A., & Commenges, D. (2005). CASCADE collaboration. Joint modelling of bivariate longitudinal data with informative dropout and left-censoring, with application to the evolution of CD4+ cell count and HIV RNA viral load in response to treatment of HIV infection. Statistics in Medicine, 24, 65–82.

    Article  PubMed  Google Scholar 

  16. Hsieh, F., Tseng, Y. K., & Wang, J. L. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. Biometrics, 62, 1037–1043.

    Article  PubMed  Google Scholar 

  17. Elashoff, R. M., Li, G., & Li, N. (2007). An approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine, 26, 2813–2835.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Diggle, P. J., Sousa, I., & Chetwynd, A. G. (2008). Joint modelling of repeated measurements and time-to-event outcomes: The fourth Armitage lecture. Statistics in Medicine, 27, 2981–2998.

    Article  PubMed  Google Scholar 

  19. Ye, W., Lin, X., & Taylor, J. (2008). Semiparametric modeling of longitudinal measurements and time-to-event data—a two stage regression calibration approach. Biometrics, 84, 1238–1246.

    Article  Google Scholar 

  20. Li, L., Hu, B., & Greene, T. (2009). A semiparametric joint model for longitudinal and survival data with application to hemodialysis study. Biometrics, 65, 737–745.

    Article  PubMed  Google Scholar 

  21. Liang, Y., Lu, W., & Ying, Z. (2009). Joint modeling and analysis of longitudinal data with informative observation times. Biometrics, 65, 377–384.

    Article  PubMed  Google Scholar 

  22. Liu, L. (2009). Joint modeling longitudinal semi-continuous data and survival, with application to longitudinal medical cost data. Statistics in Medicine, 28, 972–986.

    Article  PubMed  Google Scholar 

  23. DeGruttola, V., & Tu, X. M. (1994). Modeling progression of CD-4 lymphocyte count and its relationship to survival time. Biometrics, 50, 1003–1014.

    Article  CAS  Google Scholar 

  24. Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112–1121.

    Article  Google Scholar 

  25. Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to event data. Journal of Statistical Software, 35(9), 1–33.

  26. Tsiatis, A. A., & Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica, 14, 809–834.

    Google Scholar 

  27. Tsiatis, A. A., DeGruttola, V., & Wulfsohn, M. S. (1995). Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. JASA, 90, 27–37.

    Article  Google Scholar 

  28. Zeng, D., & Cai, J. (2005). Simultaneous modelling of survival and longitudinal data with an application to repeated quality of life measures. Lifetime Data Analysis, 11, 151–174.

    Article  PubMed  Google Scholar 

  29. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  30. van den Bent, M. J., Brandes, A. A., Taphoorn, M. J. B., et al. (2013). Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: Long-term follow-up of EORTC brain tumor group study 26951. Journal of Clinical Oncology, 31, 344–350.

    Article  PubMed  Google Scholar 

  31. Aaronson, N. K., Ahmedzai, S., Bergman, B., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85, 365–376.

    Article  CAS  PubMed  Google Scholar 

  32. Osoba, D., Aaronson, N. K., Muller, M., et al. (1996). The development and psychometric validation of a brain cancer quality-of-life questionnaire for use in combination with general cancer-specific questionnaires. Quality of Life Research, 5, 139–150.

    Article  CAS  PubMed  Google Scholar 

  33. Bottomley, A., Vanvoorden, V., Flechtner, H., et al. (2003). The challenge and achievements of implementation of quality of life research in cancer clinical trials. European Journal of Cancer, 39, 275–285.

    Article  CAS  PubMed  Google Scholar 

  34. Cull, A., Sprangers, M., Bjordal, K., et al. (2002). Guidelines for translating EORTC questionnaires. Brussels: Quality of Life Group Publications, EORTC Publications.

    Google Scholar 

  35. Osoba, D., Rodrigues, G., Myles, J., et al. (1998). Interpreting the significance of changes in health-related quality-of-life scores. Journal of Clinical Oncology, 16, 139–144.

    CAS  PubMed  Google Scholar 

  36. de Boor, C. (2001). A practical guide to splines, vol. 27 of springer series in applied mathematics (2nd ed.). New York: Springer.

    Google Scholar 

  37. Taphoorn, M. J. B., van den Bent, M. J., Mauer, M. E., et al. (2007). Health-related quality of life in patients treated for anaplastic oligodendroglioma with adjuvant chemotherapy: Results of a European Organisation for Research and Treatment of Cancer randomized clinical trial. Journal of Clinical Oncology, 25, 5723–5730.

    Article  PubMed  Google Scholar 

  38. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 239–472.

    Article  Google Scholar 

  39. Rizopoulos, D., Verbeke, G., & Molenberghs, G. (2010). Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics, 66, 20–29.

    Article  PubMed  Google Scholar 

  40. Viviani, S., Rizopoulos, D., & Alfo, M. (2014). Local sensitivity of shared parameter models to non-ignorability of dropout. Statistical Modelling, 14, 205–228.

  41. R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  42. SAS Institute Inc. (2011). SAS ® 9.3 system options: Reference (2nd ed.). Cary, NC: SAS Institute Inc.

    Google Scholar 

  43. Horowitz, J. L. (1999). Semiparametric estimation of a proportional hazard model with unobserved heterogeneity. Econometrica, 67, 1001–1028.

    Article  Google Scholar 

  44. Abbring, J. H., & Van den Berg, G. J. (2007). The unobserved heterogeneity distribution in duration analysis. Biometrika, 94, 87–99.

    Article  Google Scholar 

  45. Sweeting, M. J., & Thompson, S. G. (2011). Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biometrical Journal, 53, 750–763.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Chen, L. M., Ibrahim, J. G., & Chu, H. (2011). Sample size and power determination in joint modeling of longitudinal and survival data. Statistics in Medicine, 2011(30), 2295–2309.

    Article  Google Scholar 

  47. Rizopoulos, D., Murawska, M., Andrinopoulou, E. R., Molenberghs, G., Takkenberg, J. J. M., & Lesaffre, E. (2013). Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and land marking. arXiv:1306.6479v1.

  48. Ediebah, D. E., Coens, C., Maringwa, J. T., et al. (2013). Effect of completion-time windows in the analysis of health-related quality of life outcomes in cancer patients. Annals of Oncology, 24, 231–237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the EORTC Brain Tumor Group, especially the principal investigator Prof. Dr Martin J. van den Bent and the other investigators and all patients who participated in this closed EORTC trial; and Cheryl Whittaker for editorial help. This study was supported by grants from the Belgian Cancer Foundation and USA Grant No. 5U10 CA011488-39 through 5U10 CA011488-40 from National Cancer Institute (Bethesda, MD), European Organisation for Research and Treatment of Cancer (EORTC) Charitable Trust, Belgian Cancer Foundation and Pfizer Global Partnership Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divine E. Ediebah.

Appendix

Appendix

Formula for model 1

$$h_{i} (t) = h_{0} (t)\exp (\gamma_{1} \omega_{i1} + \gamma_{2} \omega_{i2} + \cdots + \gamma_{p} \omega_{ip} )$$
(1)

where \(h_{i} (t)\) denotes the hazard for an event for a patient i at time t, \(h_{0} (t)\) denotes the baseline hazard, and \(\omega_{i1} , \ldots ,\omega_{ip}\) is a set of covariates.

Formula for model 2

$$h_{i} \left( {t\left| { Y_{i} (t), \omega_{i} } \right.} \right) = h_{0} (t)R_{i} \exp \left\{ {\gamma^{T} \omega_{i} + \alpha y_{i} (t)} \right\},$$
(2)

where \(N_{i} (t)\) is the counting process which counts the number of events for patient i by time t, \(h_{i} (t)\) denotes the intensity process for \(N_{i} (t)\), \(R_{i} (t)\) denotes the risk process (‘1’ if patient i still at risk at t), and \(y_{i} (t)\) denotes the value of the time-dependent covariate at t.

Formula for model 3

Survival submodel

$$h_{i} \left( {t\left| {M_{i} (t)} \right.} \right) = h_{0} (t)\exp \left\{ {\gamma^{T} \omega_{i} + \alpha m_{i} (t)} \right\},$$
(3a)

where \(M_{i} (t) = \left\{ {m_{i} (s),\;0 \le s < t} \right\}\) denotes the history of the true unobserved longitudinal HRQoL score up to time t, \(h_{0} ( \cdot )\) denotes the baseline risk function, \(\alpha\) quantifies the effect of HRQoL score on the hazard for death, \(\omega_{i}\) baseline covariates.

Linear mixed-effect submodel

$$\begin{aligned} y_{i} (t) & = m_{i} (t) + \varepsilon_{i} (t) \\ & = \left( {\beta_{0} + b_{i0} } \right) + \left( {\beta_{1} + b_{i1} } \right)B_{n} \left( {t,\lambda_{1} } \right) + \left( {\beta_{2} + b_{i2} } \right)B_{n} \left( {t,\lambda_{2} } \right) + \left( {\beta_{3} + b_{i3} } \right)B_{n} \left( {t,\lambda_{3} } \right) \\ & \quad + \beta_{4} \left\{ {B_{n} (t,\lambda_{1} ) \times {\text{TTRT}}_{i} } \right\} + \beta_{5} \left\{ {B_{n} (t,\lambda_{2} ) \times {\text{TTRT}}_{i} } \right\} + \beta_{6} \left\{ {B_{n} (t,\lambda_{3} ) \times {\text{TTRT}}_{i} } \right\} \\ & \quad + \beta_{7} {\text{Age}}_{i} + \beta_{8} {\text{TTRT}}_{i} + \beta_{9} {\text{WHO}}_{i} + \beta_{10} {\text{PRES}}_{i} + \beta_{10} {\text{CUSUR}}_{i} + \varepsilon_{i} (t),\quad \varepsilon_{i} (t)\sim N(0,\sigma^{2} ) \\ \end{aligned}$$
(3b)

where \(\left\{ {B_{n} \left( {t,\lambda_{k} } \right);k = 1,2,3} \right\}\) denotes a B-splines basis matrix for a natural cubic splines of time 3 knots placed at equally spaced percentiles of the follow-up times, TTRT is the dummy variable for treatment. Age, WHO, PRES, and COSUR are the baseline covariates. \(b_{i}\) is the random-effects part, \(b_{i} \sim N(0, D)\), \(\varepsilon_{i} (t)\) is the measurement error term which is assumed independent of \(b_{i}\) with variance \(\sigma^{2}\).

Joint distribution

$$p\left( {y_{i} ,T_{i} \delta_{i} } \right) = \mathop \int \nolimits p\left( {y_{i} \left| {b_{i} } \right.} \right)\left\{ {h(T_{i} \left| {b_{i} } \right.)^{{\delta_{i} }} S(T_{i} \left| {b_{i} } \right.)} \right\} p\left( {b_{i} } \right)db_{i} ,$$
(3c)

where b i is a vector of random effects that explains the interdependencies, \(p( \cdot )\) is the density function, and \(S( \cdot )\) is the survival function.

Dynamic predictions

$$Y_{i} (t) = \left\{ {y_{i} \left( s \right), 0 \le s \le t} \right\}$$
(4a)

and we are interested in

$$\pi_{i} \left( {u\left| t \right.} \right) = \Pr \left\{ {T_{i}^{*} \ge u|T_{i}^{*} > t, Y_{i} (t), \omega_{i} D_{n} ;\theta^{*} } \right\},\quad t > 0,$$
(4b)

where \(u > t, \theta^{*}\) denotes the true parameter values and \(D_{n}\) denotes the sample the joint model was fitted.

SAS and R code to fit Cox models and joint models

Description: The SAS codes illustrate basic extended Cox models. The R script illustrates the basic use of the R package JM for fitting joint models for longitudinal and survival data.

  • The EORTC 26951 dataset

  • # AP score = longitudinal marker

  • # SS = Survival times

  • # TSS = Survival status

  • # TRTT = Randomized treatment

  • # QOLTIMES = AP score measurement times

  • #Baseline covariates: Age (>40 or ≤40), WHO (WHO performance status 0 or 1 vs. 2), PRES (prior surgery for a low-grade oligodendroglioma; yes or no), and COSUR (surgery; biopsy only vs. debulking surgery/resection).

SAS codes

Basic Cox model (model 1)

figure a

Time-dependent Cox model (model 2)

figure b

R script

figure c

The joint model: jointModel() takes the above fitted models as arguments and fits the joint model; below, we fit a joint model with a relative risk submodel for the event time outcome, in which the baseline risk function is assumed piecewise constant

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ediebah, D.E., Galindo-Garre, F., Uitdehaag, B.M.J. et al. Joint modeling of longitudinal health-related quality of life data and survival. Qual Life Res 24, 795–804 (2015). https://doi.org/10.1007/s11136-014-0821-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-014-0821-6

Keywords

Navigation