Skip to main content

Advertisement

Log in

Biological pathways, candidate genes, and molecular markers associated with quality-of-life domains: an update

  • Review
  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Background

There is compelling evidence of a genetic foundation of patient-reported quality of life (QOL). Given the rapid development of substantial scientific advances in this area of research, the current paper updates and extends reviews published in 2010.

Objectives

The objective was to provide an updated overview of the biological pathways, candidate genes, and molecular markers involved in fatigue, pain, negative (depressed mood) and positive (well-being/happiness) emotional functioning, social functioning, and overall QOL.

Methods

We followed a purposeful search algorithm of existing literature to capture empirical papers investigating the relationship between biological pathways and molecular markers and the identified QOL domains.

Results

Multiple major pathways are involved in each QOL domain. The inflammatory pathway has the strongest evidence as a controlling mechanism underlying fatigue. Inflammation and neurotransmission are key processes involved in pain perception, and the catechol-O-methyltransferase (COMT) gene is associated with multiple sorts of pain. The neurotransmitter and neuroplasticity theories have the strongest evidence for their relationship with depression. Oxytocin-related genes and genes involved in the serotonergic and dopaminergic pathways play a role in social functioning. Inflammatory pathways, via cytokines, also play an important role in overall QOL.

Conclusions

Whereas the current findings need future experiments and replication efforts, they will provide researchers supportive background information when embarking on studies relating candidate genes and/or molecular markers to QOL domains. The ultimate goal of this area of research is to enhance patients’ QOL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hampton, T. (2004). Patients’ genes may influence quality of life after cancer chemotherapy. JAMA, 292(6), 673–674.

    CAS  PubMed  Google Scholar 

  2. Sloan, J., & Zhao, X. (2006). Genetics and quality of life. Current Problems in Cancer, 30, 255–260.

    PubMed  Google Scholar 

  3. Sprangers, M. A. G., Sloan, J. A., Veenhoven, R., Cleeland, C. S., Halyard, M. Y., Abertnethy, A. M., et al. (2009). The establishment of the GENEQOL Consortium to investigate the genetic disposition of patient-reported quality-of-life outcomes. Twin Research and Human Genetics, 12(3), 301–311.

    PubMed Central  PubMed  Google Scholar 

  4. Sprangers, M. A. G., Sloan, J. A., Barsevick, A., Chauhan, C., Dueck, A. C., Raat, H., et al. (2010). Scientific imperatives, clinical implications, and theoretical underpinnings for the investigation of the relationship between genetic variables and patient-reported quality-of-life outcomes. Quality of Life Research, 19, 1395–1403.

    PubMed Central  PubMed  Google Scholar 

  5. Bartels, M., Saviouk, V., de Moor, M. H. M., Willemsen, A. H. M., van Beijsterveldt, C. E. M., Hottenga, J. J., et al. (2010). Heritability and genome-wide linkage scan for subjective happiness. Twin Research and Human Genetics, 13(2), 135–142.

    PubMed  Google Scholar 

  6. Rausch, S. M., Clark, M. M., Patten, C., Liu, H., Felten, S., Li, Y., et al. (2010). Relationship between cytokine gene single nucleotide polymorphisms and symptom burden and quality of life in lung cancer survivors. Cancer, 116, 4103–4113.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Schoormans, D., Radonic, T., de Witte, P., Groenink, M., Azim, D., Lutter, R., et al. (2012). Mental quality of life is related to a cytokine genetic pathway. PLoS ONE, 7(9), e45126.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Zwinderman, A.H., Sprangers, M.A.G., Baas, F., Van Noorden, C.J., Radbruch, L., Davies, A., Swaab, D.F., et al. (2010). Genes selected for their relevance to pain are also associated with fatigue and dyspnea: Evidence of the European Pharmacogenetic Opioid Study. Annual Conference of the International Society for Quality of Life Research, London. Abstract: NO147.

  9. Shi, Q., Cleeland, C. S., Klepstad, P., Miaskowski, C., & Pedersen, N. L. (2010). Biological pathways and genetic variables involved in pain. Quality of Life Research, 17, 1407–1417.

    Google Scholar 

  10. Barsevick, A., Frost, M., Zwinderman, A. H., Hall, P., & Halysard, M. (2010). I’m so tired: biological and genetic mechanisms of cancer-related fatigue. Quality of Life Research, 19(10), 1419–1427.

    PubMed Central  PubMed  Google Scholar 

  11. Sprangers, M. A. G., Bartels, M., Veenhoven, R., Baas, F., Martin, N. G., Mosing, M., et al. (2010). Which patient will feel down, which will be happy? The need to study genetic disposition of emotional states. Quality of Life Research, 19, 1429–1437.

    PubMed Central  PubMed  Google Scholar 

  12. Ordoñana, J. R., Bartels, M., Boomsma, D. I., Cella, D., Mosing, M., Oliveira, J. R., et al. (2013). Biological pathways and genetic mechanisms involved in social functioning. Quality of Life Research, 22(6), 1189–1200.

    PubMed  Google Scholar 

  13. Thornton, L. M., Andersen, B. L., & Blakely, W. P. (2010). The pain, depression, and fatigue symptom cluster in advanced breast cancer: Covariation with the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Health Psychology, 29(3), 333–337.

    PubMed Central  PubMed  Google Scholar 

  14. Saligan, L. N., & Kim, H. S. (2012). A systematic review of the association between immunogenomic markers and cancer-related fatigue. Brain, Behavior, and Immunity, 26(6), 830–848.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Aouizerat, B. E., Dodd, M., Lee, K., West, C., Paul, S. M., Cooper, B. A., et al. (2009). Preliminary evidence of a genetic association between tumor necrosis factor alpha and the severity of sleep disturbance and morning fatigue. Biological Research for Nursing, 11(1), 27–41.

    CAS  PubMed  Google Scholar 

  16. Collado-Hidalgo, A., Bower, J. E., Ganz, P. A., Irwin, M. R., & Cole, S. W. (2008). Cytokine gene polymorphisms and fatigue in breast cancer survivors: Early findings. Brain, Behavior, and Immunity, 22(8), 1197–1200.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Platten, M., Wick, W., & Van den Eynde, B. J. (2012). Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Research, 72(21), 5435–5440.

    CAS  PubMed  Google Scholar 

  18. Schroecksnadel, K., Fiegl, M., Prassl, K., Winkler, C., Denz, H. A., & Fuchs, D. (2007). Diminished quality of life in patients with cancer correlates with tryptophan degradation. Journal of Cancer Research and Clinical Oncology, 133(7), 477–485.

    CAS  PubMed  Google Scholar 

  19. Jun, S. E., Kohen, R., Cain, K. C., Jarrett, M. E., & Heitkemper, M. M. (2014). TPH Gene polymorphisms are associated with disease perception and quality of life in women with irritable bowel syndrome. Biological Research for Nursing, 16(1), 95–104.

    CAS  PubMed  Google Scholar 

  20. Fernandez-de-Las-Penas, C., Cantarero-Villanueva, I., Fernandez-Lao, C., Ambite-Quesada, S., Diaz-Rodriquez, L., Rivas-Martinez, I., et al. (2012). Influence of catechol-o-methyltransferase genotype (Val158Met) on endocrine, sympathetic nervous and mucosal immune systems in breast cancer survivors. Breast, 21(2), 199–203.

    PubMed  Google Scholar 

  21. Lim, J., Ebstein, R., Tse, C. Y., Monakhov, M., Lai, P. S., Dinges, D. F., et al. (2012). Dopaminergic polymorphisms associated with time-on-task declines and fatigue in the Psychomotor Vigilance Test. PLoS ONE, 7(3), e33767.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Sloan, J. A., de Andrade, M., Decker, P., Wampfler, J., Oswold, C., Clark, M., et al. (2012). Genetic variations and patient-reported quality of life among patients with lung cancer. Journal of Clinical Oncology, 30, 1–9.

    Google Scholar 

  23. Clement, K., & Langin, D. (2007). Regulation of inflammation-related genes in human adipose tissue. Journal of Internal Medicine, 262(4), 422–430.

    CAS  PubMed  Google Scholar 

  24. Peters, M. J., Broer, L., Willemen, H. L., Eiriksdottir, G., Hocking, L. J., Holliday, K. L., et al. (2013). Genome-wide association study meta-analysis of chronic widespread pain: Evidence for involvement of the 5p15.2 region. Annals of Rheumatic Diseases, 72, 427–436.

    CAS  Google Scholar 

  25. Nishizawa, D., Fukuda, K., Kasai, S., Hasegawa, J., Aoki, Y., Nishi, A., et al. (2014). Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Molecular Psychiatry, 19(1), 55–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Ingle, J. N., Schaid, D. J., Goss, P. E., Liu, M., Mushiroda, T., Chapman, J. A., et al. (2010). Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. Journal of Clinical Oncology, 28, 4674–4682.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Galvan, A., Skorpen, F., Klepstad, P., Knudsen, A. K., Fladvad, T., Falvella, F. S., et al. (2011). Multiple loci modulate opioid therapy response for cancer pain. Clinical Cancer Research, 17, 4581–4587.

    CAS  PubMed  Google Scholar 

  28. van Meurs, J. B., Uitterlinden, A. G., Stolk, L., Kerkhof, H. J., Hofman, A., Pols, H. A., et al. (2009). A functional polymorphism in the catechol-O-methyltransferase gene is associated with osteoarthritis-related pain. Arthritis and Rheumatism, 60, 628–629.

    PubMed  Google Scholar 

  29. Fernandez-de-Las-Penas, C., Fernandez-Lao, C., Cantarero-Villanueva, I., Ambite-Quesada, S., Rivas-Martinez, I., Del Moral-Avila, R., et al. (2012). Catechol-O-methyltransferase genotype (Val158met) modulates cancer-related fatigue and pain sensitivity in breast cancer survivors. Breast Cancer Research and Treatment, 133, 405–412.

    CAS  PubMed  Google Scholar 

  30. Fijal, B., Perlis, R. H., Heinloth, A. N., & Houston, J. P. (2010). The association of single nucleotide polymorphisms in the catechol-O-methyltransferase gene and pain scores in female patients with major depressive disorder. Journal of Pain, 11(910–5), 915.

    Google Scholar 

  31. Finan, P. H., Zautra, A. J., Davis, M. C., Lemery-Chalfant, K., Covault, J., & Tennen, H. (2010). Genetic influences on the dynamics of pain and affect in fibromyalgia. Health Psychology, 29, 134–142.

    PubMed Central  PubMed  Google Scholar 

  32. Lindstedt, F., Karshikoff, B., Schalling, M., Olgart, H. C., Ingvar, M., Lekander, M., et al. (2012). Serotonin-1A receptor polymorphism (rs6295) associated with thermal pain perception. PLoS ONE, 7, e43221.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lindstedt, F., Lonsdorf, T. B., Schalling, M., Kosek, E., & Ingvar, M. (2011). Perception of thermal pain and the thermal grill illusion is associated with polymorphisms in the serotonin transporter gene. PLoS ONE, 6, e17752.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Ortega-Hernandez, O. D., Cuccia, M., Bozzini, S., Bassi, N., Moscavitch, S., Diaz-Gallo, L. M., et al. (2009). Autoantibodies, polymorphisms in the serotonin pathway, and human leukocyte antigen class II alleles in chronic fatigue syndrome: Are they associated with age at onset and specific symptoms? Annals of New York Academy of Science, 1173, 589–599.

    CAS  Google Scholar 

  35. Olsen, M. B., Jacobsen, L. M., Schistad, E. I., Pedersen, L. M., Rygh, L. J., Roe, C., et al. (2012). Pain intensity the first year after lumbar disc herniation is associated with the A118G polymorphism in the opioid receptor mu 1 gene: Evidence of a sex and genotype interaction. Journal of Neuroscience, 32, 9831–9834.

    CAS  PubMed  Google Scholar 

  36. Reimann, F., Cox, J. J., Belfer, I., Diatchenko, L., Zaykin, D. V., McHale, D. P., et al. (2010). Pain perception is altered by a nucleotide polymorphism in SCN9A. Proceedings of the National Academy of Science of the United States of America, 107, 5148–5153.

    CAS  Google Scholar 

  37. Sullivan, P. F., de Geus, E. J. C., Willemsen, G., James, M. R., Smit, J. H., Zandbelt, T., et al. (2009). Genomewide association for major depressive disorder: A possible role for the presynaptic protein piccolo. Molecular Psychiatry, 14(4), 359–375.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Muglia, P., Tozzi, F., Galway, N. W., Francks, C., Upmanyu, R., Kong, X. Q., et al. (2010). Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Molecular Psychiatry, 15, 589–601.

    CAS  PubMed  Google Scholar 

  39. Shyn, S. I., Shi, J., Kraft, J., Potash, J., Knowles, J. A., Weismann, M. M., et al. (2011). Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies. Molecular Psychiatry, 16(2), 202–215.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hek, K., Demirkan, A., Lahti, J., Terracciano, A., Teumer, A., & Cornelis, M. C. (2012). A genome-wide association study of depressive symptoms. Biological Psychiatry, 73, 667–678.

    Google Scholar 

  41. Kao, C.-F., Fang, Y.-S., Zhao, Z., & Kuo, P.-H. (2011). Prioritization and evaluation of depression candidate genes by combining multidimensional data resources. PLoS ONE, 6(4), e18696.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Bao, A.-M., Meynena, G., & Swaaba, D. F. (2008). The stress system in depression and neurodegeneration: Focus on the human hypothalamus. Brain Research Reviews, 57(2), 531–553.

    CAS  PubMed  Google Scholar 

  43. Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., et al. (2010). A meta-analysis of cytokines in major depression. Biological Psychiatry, 67, 446–457.

    CAS  PubMed  Google Scholar 

  44. Illi, J., Miaskowski, C., Cooper, B., Levine, J. D., Dunn, L., West, C., et al. (2012). Association between pro- and anti-inflammatory cytokine genes and a symptom cluster of pain, fatigue, sleep disturbance, and depression. Cytokine, 58, 437–447.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Bower, J. E., Ganz, P. A., Irwin, M. R., Castellon, S., Arevalo, J., & Cole, S. W. (2013). Cytokine genetic variations and fatigue among patients with breast cancer. Journal of Clinical Oncology, 31(13), 1656–1661.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Piraino, B., Vollmer-Conna, U., & Lloyd, A. R. (2012). Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain, Behavior, and Immunity, 26, 552–558.

    CAS  PubMed  Google Scholar 

  47. Holtzman, S., Abbey, S. E., Chan, C., Bargman, J. M., & Stewart, D. E. (2012). A genetic predisposition to produce low levels of IL-10 is related to depressive symptoms: A pilot study of patients with end stage renal disease. Psychosomatics, 53, 155–161.

    CAS  PubMed  Google Scholar 

  48. De Neve, J. E. (2011). Functional polymorphism (5-HTTLPR) in the serotonin transporter gene is associated with subjective well-being: Evidence from a US nationally representative sample. Journal of Human Genetics, 56(6), 456–459.

    PubMed  Google Scholar 

  49. De Neve, J. E., Christakis, N. A., Fowler, J. H., & Frey, B. S. (2012). Genes, economics, and happiness. Journal of Neuroscience, Psychology, and Economics, 5(4), 193–211.

    Google Scholar 

  50. Chen, H., Pine, D. S., Ernst, M., Gorodetsky, E., Kasen, S., Gordon, K., et al. (2013). The MAOA gene predicts happiness in women. Progress in Neuropsychopharmacology and Biological Psychiatry, 10(40), 122–125.

    Google Scholar 

  51. Rietveld, C. A., Cesarini, D., Benjamin, D. J., Koellinger, P. D., De Neve, J. E., Tiemeier, H., et al. (2013). Molecular genetics and subjective well-being. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9692–9697.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J. W., et al. (2012). Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. Journal of Neuroscience, 32(50), 18087–18100.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Antypa, N., Calati, R., Souery, D., Pellegrini, S., Sentissi, O., Amital, D., et al. (2013). Variation in the HTR1A and HTR2A genes and social adjustment in depressed patients. Journal of Affective Disorders, 150(2), 649–652.

    CAS  PubMed  Google Scholar 

  54. Brown, A. A., Jensen, J., Nikolova, Y. S., Djurovic, S., Agartz, I., Server, A., et al. (2012). Genetic variants affecting the neural processing of human facial expressions: evidence using a genome-wide functional imaging approach. Translational Psychiatry, 2, e143.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Vinkhuyzen, A. A., Pedersen, N. L., Yang, J., Lee, S. H., Magnusson, P. K., Iacono, W. G., et al. (2012). Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. Translational Psychiatry, 2, e102.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Kim, H. N., Roh, S. J., Sung, Y. A., Chung, H. W., Lee, J. Y., Cho, J., et al. (2013). Genome-wide association study of the five-factor model of personality in young Korean women. Journal of Human Genetics, 58(10), 667–674.

    CAS  PubMed  Google Scholar 

  57. Luciano, M., Huffman, J. E., Arias-Vasquez, A., Vinkhuyzen, A. A., Middeldorp, C. M., Giegling, I., et al. (2012). Genome-wide association uncovers shared genetic effects among personality traits and mood states. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B(6), 684–695.

    Google Scholar 

  58. Amin, N., Hottenga, J. J., Hansell, N. K., Janssens, A. C., de Moor, M. H., Madden, P. A., et al. (2013). Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions. European Journal of Human Genetics, 21(8), 876–882.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lucas-Thompson, R. G., & Holman, E. A. (2013). Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress. Hormones and Behavior, 63(4), 615–624.

    CAS  PubMed  Google Scholar 

  60. Montag, C., Brockmann, E. M., Lehmann, A., Muller, D. J., Rujescu, D., & Gallinat, J. (2012). Association between oxytocin receptor gene polymorphisms and self-rated ‘empathic concern’ in schizophrenia. PLoS ONE, 7(12), e51882.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Norman, G. J., Hawkley, L., Luhmann, M., Ball, A. B., Cole, S. W., Berntson, G. G., et al. (2012). Variation in the oxytocin receptor gene influences neurocardiac reactivity to social stress and HPA function: A population based study. Hormones and Behavior, 61(1), 134–139.

    CAS  PubMed  Google Scholar 

  62. Olff, M., Frijling, J. L., Kubzansky, L. D., Bradley, B., Ellenbogen, M. A., Cardoso, C., et al. (2013). The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology, 38(9), 1883–1894.

    CAS  PubMed  Google Scholar 

  63. Kumsta, R., Hummel, E., Chen, F. S., & Heinrichs, M. (2013). Epigenetic regulation of the oxytocin receptor gene: Implications for behavioral neuroscience. Frontiers in Neuroscience, 7, 83.

    PubMed Central  PubMed  Google Scholar 

  64. Belsky, J., & Pluess, M. (2013). Genetic moderation of early child-care effects on social functioning across childhood: A developmental analysis. Child Development, 84(4), 1209–1225.

    PubMed  Google Scholar 

  65. Fergusson, D. M., Boden, J. M., Horwood, L. J., Miller, A. L., & Kennedy, M. A. (2011). MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. British Journal of Psychiatry, 198, 457–463.

    PubMed Central  PubMed  Google Scholar 

  66. Strohmaier, J., Amelang, M., Hothorn, L. A., Witt, S. H., Nieratschker, V., Gerhard, D., et al. (2013). The psychiatric vulnerability gene CACNA1C and its sex-specific relationship with personality traits, resilience factors and depressive symptoms in the general population. Molecular Psychiatry, 18(5), 607–613.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dick Swaab for his suggestion to devise a table presenting the biological pathways and genes that are involved in the different QOL domains (Table 7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjam A. G. Sprangers.

Additional information

On behalf of the GeneQol Consortium.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Supplementary material 2 (DOCX 50 kb)

Appendices

Appendix 1: Glossary

Allele

Is one of a number of alternative forms of the same gene or same genetic locus (generally a group of genes). It is the alternative form of a gene producing different effects. Sometimes, different alleles can result in different observable phenotypic traits.

Blood plasma

Is the liquid component of blood, consisting 90 % of water, with the 10 % remainder including proteins, minerals, waste products, clotting factors, hormones, and immunoglobins.

Blood serum

Is the blood plasma without the clotting elements.

Chromosome

Self-replicating structures in the nucleus of a cell that carry the genetic information.

DNA (deoxyribonucleic acid)

The double-stranded molecule that encodes genetic information.

Epigenetics

The study of heritable changes to DNA structure that do not alter the underlying sequence.

Gene

The basic unit of inheritance. A sequence of DNA that codes for a particular protein product.

Genome

The entire collection of genetic information (or genes) that an organism possesses.

Ligand

Ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex.

Genome-wide association study (GWAS)

A study that evaluates association of genetic variation with outcomes or traits of interest by using 100,000 to 1,000,000 markers or more across the genome.

Genotype

The genetic constitution of an individual.

Haplotype

Is a combination of alleles (DNA sequences) at adjacent locations on a chromosome that are inherited together.

Heritability

The proportion of phenotypic differences among individuals that can be attributed to genetic differences in a particular population.

Locus (plural, loci)

The site(s) on a chromosome at which the gene for a particular trait is located.

Linkage study

Study to identify physical segments (e.g., chromosomal regions) that are associated with given traits.

Nucleotides

Organic molecules that are the building blocks of nucleic acids, like DNA and RNA.

Phenotype

An observed characteristic of an individual that results from the combined effects of genotype and environment.

Polymorphism

The existence of two or more variants of a gene, occurring in a population, with at least 1 % frequency of the less common variant (cf mutation).

SNP

A single nucleotide polymorphism is a variation in a DNA sequence when a single nucleotide in the gene differs between paired chromosomes.

Note: definitions are taken from text books and Wikipedia.

Appendix 2: GENEQOL Consortium Participants per September 2013

Amy P. Abertnethy, Duke Cancer Care Research Program, Duke University Medical Center, Durham, NC, USA; Frank Baas, Laboratory of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Andrea M. Barsevick, Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA; Meike Bartels, Department of Biological Psychology, VU University, Amsterdam, the Netherlands; Dorret I. Boomsma, Department of Biological Psychology, VU University, Amsterdam, the Netherlands; Andrew Bottomley, Quality of Life Department, EORTC Data Center, Brussels, Belgium; Michael Brundage, Department of Oncology, Queen’s University Cancer Centre of Southeastern Ontario, Kingston, Ontario, Canada; David Cella, Department of Medical Social Sciences, Feinberg School of Medicine, Chicago, IL, USA; Cynthia Chauhan, Cancer Advocay, Wichita, KS, USA; Charles S. Cleeland, Department of Symptom Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA; Corneel Coens, Quality of Life Department, EORTC Data Center, Brussels, Belgium; Amylou C. Dueck, Section of Biostatistics, Mayo Clinic, Scottsdale, AZ, USA; Marlene H. Frost, Women’s Cancer Program, Mayo Clinic, Rochester, MN, USA; Per Hall, Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden; Michele Y. Halyard, Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ, USA; Pål Klepstad, Department of Intensive Care Medicine, St Olavs University Hospital, Norwegian University of Technology and Science, Trondheim, Norway; Hanneke W.M. van Laarhoven, Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Nicholas G. Martin, Queensland Institute of Medical Research, Brisbane, Australia; Christine Miaskowski, School of Nursing, University of California, San Francisco, CA, USA; Miriam Mosing, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Benjamin Movsas, Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA; Joao R. Oliveira, Department of Neuropsychiatry, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Juan Ordoñana, Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, Spain; Donald L. Patrick, Department of Health Services, University of Washington, Seattle, WA, USA; Nancy L. Pedersen, Department of Medical Epidemiology and Biostatistics, Karolinska; Institute, Stockholm, Sweden; Hein Raat, Preventive Youth Health Care, Erasmus Medical Center, Rotterdam, the Netherlands; Bryce Reeve, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA; Ristvedt Stephen, Department of Psychiatry, Washington University, St. Louis, MO, USA; Mary E. Ropka, Cancer Prevention and Control Program, Fox Chase Cancer Center, Cheltenham, PA, USA; Carolyn Schwartz, DeltaQuest Foundation, Concord, MA, USA; Quiling Shi, Department of Symptom Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA; Gen Shinozaki, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA; Jasvinder A. Singh, Minneapolis Veterans Affairs Medical Center and University of Minnesota, Minneapolis, MN and Mayo Clinic College of Medicine, Rochester, MN, USA; Jeff A. Sloan, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Mirjam A. G. Sprangers, Department of Medical Psychology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Dick Swaab, The Netherlands Institutes for Neuroscience, Amsterdam, the Netherlands; Jayant Talwalkar, Division of Gastroenterology & Hepatology, Rochester, Mayo Clinic, MN, USA; Melissa Thong, Department of Medical and Clinical Psychology, Center of Research on Psychology in Somatic diseases (CoRPS), Tilburg University, Tilburg, The Netherlands; Cornelis J. F. Van Noorden, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Ruut Veenhoven, Faculty of Social Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands; Gert Wagner, Berlin University of Technology, Max Planck Research School LIFE, Berlin, Germany; Xin Shelley Wang, Department of Symptom Research, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; Eddy Wierenga, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Ping Yang, Department of Genetic Epidemiology, Mayo Clinic, Rochester, MN, USA; Ailko H. Zwinderman, Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprangers, M.A.G., Thong, M.S.Y., Bartels, M. et al. Biological pathways, candidate genes, and molecular markers associated with quality-of-life domains: an update. Qual Life Res 23, 1997–2013 (2014). https://doi.org/10.1007/s11136-014-0656-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-014-0656-1

Keywords

Navigation