Skip to main content
Log in

Factorial invariance of pediatric patient self-reported fatigue across age and gender: a multigroup confirmatory factor analysis approach utilizing the PedsQL™ Multidimensional Fatigue Scale

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Objectives

In order to compare multidimensional fatigue research findings across age and gender subpopulations, it is important to demonstrate measurement invariance, that is, that the items from an instrument have equivalent meaning across the groups studied. This study examined the factorial invariance of the 18-item PedsQL™ Multidimensional Fatigue Scale items across age and gender and tested a bifactor model.

Methods

Multigroup confirmatory factor analysis (MG-CFA) was performed specifying a three-factor model across three age groups (5–7, 8–12, and 13–18 years) and gender. MG-CFA models were proposed in order to compare the factor structure, metric, scalar, and error variance across age groups and gender. The analyses were based on 837 children and adolescents recruited from general pediatric clinics, subspecialty clinics, and hospitals in which children were being seen for well-child checks, mild acute illness, or chronic illness care.

Results

A bifactor model of the items with one general factor influencing all the items and three domain-specific factors representing the General, Sleep/Rest, and Cognitive Fatigue domains fit the data better than oblique factor models. Based on the multiple measures of model fit, configural, metric, and scalar invariance were found for almost all items across the age and gender groups, as was invariance in the factor covariances. The PedsQL™ Multidimensional Fatigue Scale demonstrated strict factorial invariance for child and adolescent self-report across gender and strong factorial invariance across age subpopulations.

Conclusions

The findings support an equivalent three-factor structure across the age and gender groups studied. Based on these data, it can be concluded that pediatric patients across the groups interpreted the items in a similar manner regardless of their age or gender, supporting the multidimensional factor structure interpretation of the PedsQL™ Multidimensional Fatigue Scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varni, J. W., & Limbers, C. A. (2009). The Pediatric Quality of Life Inventory™: Measuring pediatric health-related quality of life from the perspective of children and their parents. Pediatric Clinics of North America, 56, 843–863.

    Article  PubMed  Google Scholar 

  2. Eiser, C. (2004). Use of quality of life measures in clinical trials. Ambulatory Pediatrics, 4, 395–399.

    Article  PubMed  Google Scholar 

  3. Varni, J. W., Handen, B. L., Corey-Lisle, P. K., Guo, Z., Manos, G., Ammerman, D. K., et al. (2012). Effect of Aripiprazole 2 to 15 mg/d on health-related quality of life in the treatment of irritability associated with Autistic Disorder in children: A post hoc analysis of two controlled trials. Clinical Therapeutics, 34, 980–992.

    Article  PubMed  CAS  Google Scholar 

  4. FDA. (2009). Guidance for industry: Patient-reported outcome measures: Use in medical product development to support labeling claims: Food and Drug Administration, U.S. Department of Health and Human Services, Rockville, MD.

  5. Varni, J. W., Seid, M., & Rode, C. A. (1999). The PedsQL™: Measurement model for the Pediatric Quality of Life Inventory. Medical Care, 37, 126–139.

    Article  PubMed  CAS  Google Scholar 

  6. Varni, J. W., Seid, M., & Kurtin, P. S. (2001). PedsQL™ 4.0: Reliability and validity of the Pediatric Quality of Life Inventory™ version 4.0 Generic Core Scales in healthy and patient populations. Medical Care, 39, 800–812.

    Article  PubMed  CAS  Google Scholar 

  7. Varni, J. W., Limbers, C. A., & Burwinkle, T. M. (2007). How young can children reliably and validly self-report their health-related quality of life?: An analysis of 8,591 children across age subgroups with the PedsQL™ 4.0 Generic Core Scales. Health and Quality of Life Outcomes, 5(1), 1–13.

    Article  PubMed  Google Scholar 

  8. Sweeting, H. (1995). Reversals of fortune?: Sex differences in health in childhood and adolescence. Social Science and Medicine, 40, 77–90.

    Article  PubMed  CAS  Google Scholar 

  9. Arrington-Sanders, R., Yi, M. S., Tsevat, J., Wilmott, R. W., Mrus, J. M., & Britto, M. T. (2006). Gender differences in health-related quality of life of adolescents with cystic fibrosis. Health and Quality of Life Outcomes, 4(5), 1–8.

    Google Scholar 

  10. Jorngarden, A., Wettergen, L., & von Essen, L. (2006). Measuring health-related quality of life in adolescents and young adults: Swedish normative data for the SF-36 and the HADS, and the influence of age, gender, and method of administration. Health and Quality of Life Outcomes, 4(91), 1–10.

    Google Scholar 

  11. Reinfjell, T., Diseth, T. H., Veenstra, M., & Vikan, A. (2006). Measuring health-related quality of life in young adolescents: Reliability and validity in the Norwegian version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™) Generic Core Scales. Health and Quality of Life Outcomes, 4(61), 1–9.

    Google Scholar 

  12. Upton, P., Eiser, C., Cheung, I., Hutchings, H. A., Jenney, M., Maddocks, A., et al. (2005). Measurement properties of the UK-English version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™) Generic Core Scales. Health and Quality of Life Outcomes, 3(22), 1–7.

    Google Scholar 

  13. Vaez, M., & Laflamme, L. (2003). Health behaviors, self-rated health, and quality of life: A study among first-year Swedish university students. Journal of American College Health, 51, 156–162.

    Article  PubMed  Google Scholar 

  14. Meredith, W., & Teresi, J. A. (2006). An essay on measurement and factorial invariance. Medical Care, 44, S69–S77.

    Article  PubMed  Google Scholar 

  15. Gregorich, S. E. (2006). Do self-report instruments allow meaningful comparisons across diverse population groups?: Testing measurement invariance using the confirmatory factor analysis framework. Medical Care, 44, S78–S94.

    Article  PubMed  Google Scholar 

  16. Varni, J. W., Stucky, B. D., Thissen, D., DeWitt, E. M., Irwin, D. E., Lai, J. S., et al. (2010). PROMIS Pediatric Pain Interference Scale: An item response theory analysis of the pediatric pain item bank. Journal of Pain, 11, 1109–1119.

    Article  PubMed  Google Scholar 

  17. French, B., & Finch, W. (2006). Confirmatory factor analytic procedures for the determination of measurement invariance. Structural Equation Modeling, 13, 378–402.

    Article  Google Scholar 

  18. Teresi, J. A. (2006). Overview of quantitative measurement methods: Equivalence, invariance, and differential item functioning in health applications. Medical Care, 44, S39–S49.

    Article  PubMed  Google Scholar 

  19. Vandenberg, R., & Lance, C. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–70.

    Article  Google Scholar 

  20. Little, T. D. (1997). Mean and covariance structures (MACS) analyses of cross-cultural data: Practical and theoretical issues. Multivariate Behavioral Research, 32, 53–76.

    Article  Google Scholar 

  21. Limbers, C. A., Newman, D. A., & Varni, J. W. (2008). Factorial invariance of child self-report across healthy and chronic health condition groups: A confirmatory factor analysis utilizing the PedsQL™ 4.0 Generic Core Scales. Journal of Pediatric Psychology, 33, 630–639.

    Article  PubMed  Google Scholar 

  22. Limbers, C. A., Newman, D. A., & Varni, J. W. (2008). Factorial invariance of child self-report across socioeconomic status groups: A multigroup confirmatory factor analysis utilizing the PedsQL™ 4.0 Generic Core Scales. Journal of Behavioral Medicine, 31, 401–411.

    Article  PubMed  Google Scholar 

  23. Limbers, C. A., Newman, D. A., & Varni, J. W. (2009). Factorial invariance of child self-report across race/ethnicity groups: A multigroup confirmatory factor analysis approach utilizing the PedsQL™ 4.0 Generic Core Scales. Annals of Epidemiology, 19, 575–581.

    Article  PubMed  Google Scholar 

  24. Varni, J. W., Limbers, C. A., & Newman, D. A. (2009). Using factor analysis to confirm the validity of children’s self-reported health-related quality of life across different modes of administration. Clinical Trials, 6, 185–195.

    Article  PubMed  Google Scholar 

  25. Varni, J. W., Limbers, C. A., Newman, D. A., & Seid, M. (2008). Longitudinal factorial invariance of the PedsQL™ 4.0 Generic Core Scales child self-report version: One year prospective evidence from the California State Children’s Health Insurance Program (SCHIP). Quality of Life Research, 17, 1153–1162.

    Article  PubMed  Google Scholar 

  26. Newman, D. A., Limbers, C. A., & Varni, J. W. (2010). Factorial invariance of child self-report across English and Spanish language groups in a Hispanic population utilizing the PedsQL™ 4.0 Generic Core Scales. European Journal of Psychological Assessment, 26, 194–202.

    Article  Google Scholar 

  27. Limbers, C. A., Newman, D. A., & Varni, J. W. (2008). Factorial invariance of child self-report across age subgroups: A confirmatory factor analysis of ages 5 to 16 years utilizing the PedsQL™ 4.0 Generic Core Scales. Value in Health, 11, 659–668.

    Article  PubMed  Google Scholar 

  28. Varni, J. W., Limbers, C. A., & Newman, D. A. (2008). Factorial invariance of the PedsQL™ 4.0 Generic Core Scales child self-report across gender: A multigroup confirmatory factor analysis with 11,356 children ages 5 to 18. Applied Research in Quality of Life, 3, 137–148.

    Article  Google Scholar 

  29. Varni, J. W., Burwinkle, T. M., Katz, E. R., Meeske, K., & Dickinson, P. (2002). The PedsQL™ in pediatric cancer: Reliability and validity of the Pediatric Quality of Life Inventory™ Generic Core Scales, Multidimensional Fatigue Scale, and cancer module. Cancer, 94, 2090–2106.

    Article  PubMed  Google Scholar 

  30. Varni, J. W., Burwinkle, T. M., & Szer, I. S. (2004). The PedsQL™ Multidimensional Fatigue Scale in pediatric rheumatology: Reliability and validity. Journal of Rheumatology, 31, 2494–2500.

    PubMed  Google Scholar 

  31. Varni, J. W., Burwinkle, T. M., Limbers, C. A., & Szer, I. S. (2007). The PedsQL™ as a patient-reported outcome in children and adolescents with fibromyalgia: An analysis of OMERACT domains. Health and Quality of Life Outcomes, 5(9), 1–12.

    Article  PubMed  Google Scholar 

  32. Palmer, S. N., Meeske, K. A., Katz, E. R., Burwinkle, T. M., & Varni, J. W. (2007). The PedsQL™ Brain Tumor Module: Initial reliability and validity. Pediatric Blood & Cancer, 49, 287–293.

    Article  Google Scholar 

  33. Marcus, S. B., Strople, J. A., Neighbors, K., Weissberg-Benchell, J., Nelson, S. P., Limbers, C. A., et al. (2009). Fatigue and health-related quality of life in pediatric inflammatory bowel disease. Clinical Gastroenterology and Hepatology, 7, 554–561.

    Article  PubMed  Google Scholar 

  34. Gold, J. I., Mahrer, N. E., Yee, J., & Palermo, T. M. (2009). Pain, fatigue, and health-related quality of life in children and adolescents with chronic pain. Clinical Journal of Pain, 25, 407–412.

    Article  PubMed  Google Scholar 

  35. Varni, J. W., Limbers, C. A., Bryant, W. P., & Wilson, D. P. (2009). The PedsQL™ Multidimensional Fatigue Scale in type 1 diabetes: Feasibility, reliability, and validity. Pediatric Diabetes, 10, 321–328.

    Article  PubMed  Google Scholar 

  36. Varni, J. W., Limbers, C. A., Bryant, W. P., & Wilson, D. P. (2010). The PedsQL™ Multidimensional Fatigue Scale in pediatric obesity: Feasibility, reliability, and validity. International Journal of Pediatric Obesity, 5, 34–42.

    Article  PubMed  Google Scholar 

  37. Varni, J. W., Limbers, C. A., Bryant, W. P., & Wilson, D. P. (2012). Assessment of fatigue in pediatric patients with short stature utilizing the PedsQL™ Multidimensional Fatigue Scale. Children’s Health Care, 41, 162–181.

    Article  Google Scholar 

  38. Pohl, J. F., Limbers, C. A., Kay, M. T., Harman, A., Rollins, M., & Varni, J. W. (2012). Health-related quality of life in pediatric patients with long-standing pancreatitis. Journal of Pediatric Gastroenterology and Nutrition, 54, 657–663.

    Article  PubMed  Google Scholar 

  39. MacAllister, W. S., Christodoulou, C., Troxell, R., Milazzo, M., Block, P., Preston, T. E., et al. (2009). Fatigue and quality of life in pediatric multiple sclerosis. Multiple Sclerosis, 15, 1502–1508.

    Article  PubMed  Google Scholar 

  40. Varni, J. W., & Limbers, C. A. (2008). The PedsQL™ Multidimensional Fatigue Scale in young adults: Feasibility, reliability and validity in a university student population. Quality of Life Research, 17, 105–114.

    Article  PubMed  Google Scholar 

  41. Robert, R. S., Paxton, R. J., Palla, S. L., Yang, G., Askins, M. A., Joy, S. E., et al. (2012). Feasibility, reliability, and validity of the Pediatric Quality of Life Inventory™ Generic Core Scales, Cancer Module, and Multidimensional Fatigue Scale in long-term adult survivors of pediatric cancer. Pediatric Blood & Cancer, 59, 703–707.

    Article  Google Scholar 

  42. Gordijn, M. S., Cremers, E. M., Kaspers, G. J., & Gemke, R. J. (2011). Fatigue in children: Reliability and validity of the Dutch PedsQL™ Multidimensional Fatigue Scale. Quality of Life Research, 20, 1103–1108.

    Article  PubMed  Google Scholar 

  43. Kobayashi, K., Okano, Y., & Hohashi, N. (2011). Reliability and validity of the PedsQL™ Multidimensional Fatigue Scale in Japan. Quality of Life Research, 20, 1091–1102.

    Article  PubMed  Google Scholar 

  44. Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430–457.

    Article  Google Scholar 

  45. Aday, L. A. (1996). Designing and conducting health surveys: A comprehensive guide (2nd ed.). San Francisco: Jossey-Bass.

    Google Scholar 

  46. Fowler, F. J. (1995). Improving survey questions: Design and evaluation. Thousand Oaks, CA: Sage.

    Google Scholar 

  47. Schwarz, N., & Sudman, N. (Eds.). (1996). Answering questions: Methodology for determining cognitive and communicative processes in survey research. San Francisco: Jossey-Bass.

    Google Scholar 

  48. Ringold, S., Wallace, C. A., & Rivara, F. P. (2009). Health-related quality of life, physical function, fatigue, and disease activity in children with established polyarticular juvenile idiopathic arthritis. Journal of Rheumatology, 36, 1330–1336.

    Article  PubMed  Google Scholar 

  49. Dampier, C., Lieff, S., Lebeau, P., Rhee, S., McMurray, M., Rogers, Z., et al. (2010). Health-related quality of life in children with sickle cell disease: A report from the Comprehensive Sickle Cell Centers Clinical Trial Consortium. Pediatric Blood & Cancer, 55, 485–494.

    Article  Google Scholar 

  50. Fairclough, D. L. (2002). Design and analysis of quality of life studies in clinical trials: Interdisciplinary statistics. New York: Chapman & Hall/CRC.

    Google Scholar 

  51. Millsap, R. E. (2011). Statistical approaches to measurement invariance. New York: Routledge.

    Google Scholar 

  52. Chen, F. F., West, S. G., & Sousa, K. H. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41, 189–225.

    Article  Google Scholar 

  53. Reise, S., Morizot, J., & Hays, R. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16, 19–31.

    Article  PubMed  Google Scholar 

  54. Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92, 544–559.

    Article  PubMed  Google Scholar 

  55. Byrne, B. M., & Stewart, S. M. (2006). The MACS approach to testing for multigroup invariance of a second-order structure: A walk through the process. Structural Equation Modeling, 13(2), 287–321.

    Article  Google Scholar 

  56. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233–255.

    Article  Google Scholar 

  57. Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative fit indices in tests of measurement invariance. Journal of Applied Psychology, 93(3), 568–592.

    Article  PubMed  Google Scholar 

  58. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.

    Article  PubMed  CAS  Google Scholar 

  59. McDonald, R. P. (1989). An index of goodness-of-fit based on noncentrality. Journal of Classification, 6(1), 97–103.

    Article  Google Scholar 

  60. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.

    Article  Google Scholar 

  61. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.

    Google Scholar 

  62. Bentler, P. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.

    Article  PubMed  CAS  Google Scholar 

  63. McDonald, R. P. (1989). An index of goodness-of-fit based on noncentrality. Journal of Classification, 6, 97–103.

    Article  Google Scholar 

  64. Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate Software.

    Google Scholar 

  65. Marsh, H. W., Hau, K.-T., & Grayson, D. (2005). Goodness of fit in structural equation models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary psychometrics: A festschrift for Roderick P. McDonald (pp. 275–340). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  66. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.

    Article  Google Scholar 

  67. Sivo, S. A., Xitao, F., Witta, E. L., & Willse, J. T. (2006). The search for “optimal” cutoff properties: Fit index criteria in structural equation modeling. Journal of Experimental Education, 74(3), 267–288.

    Article  Google Scholar 

  68. Yu, C.-Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Unpublished Doctoral Dissertation, University of California, Los Angeles. Available from ProQuest Dissertations and Theses (AAT 3066425).

  69. Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11(3), 320–341.

    Article  Google Scholar 

  70. Team, R. D. C. (2011). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  71. Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36.

    Google Scholar 

  72. Revelle, W. (2012). Psych: Procedures for psychological, psychometric, and personality research (Version 1.2.4) [Computer software]. Evanston, IL: Northwestern University.

  73. Green, S. B., Akey, T. M., Fleming, K. K., Hershberger, S. L., & Marquis, J. G. (1997). Effect of the number of scale points on Chi square fit indices in confirmatory factor analysis. Structural Equation Modeling, 4, 108–120.

    Article  Google Scholar 

  74. West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with non-normal variables: Problems and remedies. In R. A. Hoyle (Ed.), Structural equation modeling: Concepts, issues and applications (pp. 56–75). Newbury Park, CA: Sage.

    Google Scholar 

  75. Bentler, P. M., & Chou, C. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16, 78–117.

    Article  Google Scholar 

  76. Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530.

    Article  Google Scholar 

  77. Horn, J. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185.

    Article  PubMed  CAS  Google Scholar 

  78. Velicer, W. F., Eaton, C. A., & Fava, J. L. (2000). Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factors or components. In R. D. Goffin & E. Helmes (Eds.), Problems and solutions in human assessment: Honoring Douglas Jackson at seventy (pp. 41–71). Boston: Kluwer.

    Google Scholar 

  79. Osborne, J. W., Costello, A. B., & Kellow, T. J. (2008). Best practices in exploratory factor analysis. In J. W. Osborne (Ed.), Best practices in quantitative methods (pp. 86–99). Los Angeles: Sage.

    Chapter  Google Scholar 

  80. Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011). Performance of Velicer’s minimum average partial factor retention method with categorical variables. Educational and Psychological Measurement, 71, 551–570.

    Article  Google Scholar 

  81. Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399–419). Thousands Oaks, CA: Sage.

    Google Scholar 

  82. Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16–29.

    Article  Google Scholar 

  83. Enders, C. K. (2001). The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods, 6, 352–370.

    Article  PubMed  CAS  Google Scholar 

  84. Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and Mcdonald’s ωh: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70, 123–133.

    Article  Google Scholar 

  85. Raju, N. S., Laffitte, L. J., & Byrne, B. M. (2002). Measurement equivalence: A comparison of methods based on confirmatory factor analysis and item response theory. Journal of Applied Psychology, 87, 517–529.

    Article  PubMed  Google Scholar 

  86. American Educational Research Association, A. P. A., & National Council on Measurement in Education. (1999). American Educational Research Association, American Psychological Association, & National Council on Measurement in Education Standards for educational and psychological testing. Washington, DC.

  87. ter Wolbeek, M., van Doornen, L. J. P., Kavelaars, A., & Heijnen, C. J. (2006). Severe fatigue in adolescents: A common phenomenon? Pediatrics, 117, e1078–e1086.

    Article  PubMed  Google Scholar 

  88. Viner, R. M., Clark, C., Taylor, S. J. C., Bhui, K., Klineberg, E., Head, J., et al. (2008). Longitudinal risk factors for persistent fatigue in adolescents. Archives of Pediatrics and Adolescent Medicine, 162, 469–475.

    Article  PubMed  Google Scholar 

  89. ter Wolbeek, M., van Doornen, L. J. P., Kavelaars, A., & Heijnen, C. J. (2008). Predictors of persistent and new-onset fatigue in adolescent girls. Pediatrics, 121, e449–e457.

    Article  PubMed  Google Scholar 

  90. Reise, S. P., Bonifay, W. E., & Haviland, M. G. (2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95, 129–140.

    Google Scholar 

  91. Satorra, A., & Bentler, P. M. (2001). A scaled difference Chi square test statistic for moment structure analysis. Psychometrika, 66, 507–514.

    Article  Google Scholar 

Download references

Competing interests

Dr. Varni holds the copyright and the trademark for the PedsQL™ and receives financial compensation from the Mapi Research Trust, which is a nonprofit research institute that charges distribution fees to for-profit companies that use the Pediatric Quality of Life Inventory™.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Varni.

Additional information

The PedsQL™ is available at http://www.pedsql.org.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varni, J.W., Beaujean, A.A. & Limbers, C.A. Factorial invariance of pediatric patient self-reported fatigue across age and gender: a multigroup confirmatory factor analysis approach utilizing the PedsQL™ Multidimensional Fatigue Scale. Qual Life Res 22, 2581–2594 (2013). https://doi.org/10.1007/s11136-013-0370-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-013-0370-4

Keywords

Navigation