Skip to main content
Log in

Biological pathways and genetic mechanisms involved in social functioning

  • Review
  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

Methods

A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction.

Results

Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior.

Conclusions

Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165–178.

    Article  PubMed  CAS  Google Scholar 

  2. Brothers, L. (1990). The social brain: A project for integrating primate behavior and neurophysiology in a new domain. Concepts in Neuroscience, 1, 27–51.

    Google Scholar 

  3. Robinson, G. E., Fernald, R. D., & Clayton, D. F. (2008). Genes and social behavior. Science, 322(5903), 896–900.

    Article  PubMed  CAS  Google Scholar 

  4. Cortina, S. D., Drotar, D., Ericksen, M., Lindsey, M., Patterson, T. L., Myers, J. M., et al. (2011). Genetic biomarkers of health-related quality of life in pediatric asthma. The Journal of Pediatric, 159(1), 21–26 e21.

    Google Scholar 

  5. Zou, Y. F., Wang, Y., Liu, P., Feng, X. L., Wang, B. Y., Zang, T. H., et al. (2010). Association of BDNF Val66Met polymorphism with both baseline HRQOL scores and improvement in HRQOL scores in Chinese major depressive patients treated with fluoxetine. Human Psychopharmacology, 25(2), 145–152.

    Article  PubMed  CAS  Google Scholar 

  6. Sprangers, M. A., Sloan, J. A., Barsevick, A., Chauhan, C., Dueck, A. C., Raat, H., et al. (2010). Scientific imperatives, clinical implications, and theoretical underpinnings for the investigation of the relationship between genetic variables and patient-reported quality-of-life outcomes. Quality of Life Research, 19(10), 1395–1403.

    Article  PubMed  Google Scholar 

  7. Romeis, J. C., Heath, A. C., Xian, H., Eisen, S. A., Scherrer, J. F., Pedersen, N. L., et al. (2005). Heritability of SF-36 among middle-age, middle-class, male-male twins. Medical Care, 43(11), 1147–1154.

    Article  PubMed  Google Scholar 

  8. Sprangers, M. A., & Schwartz, C. E. (2008). Reflections on changeability versus stability of health-related quality of life: Distinguishing between its environmental and genetic components. Health Qualification of Life Outcomes, 6, 89.

    Article  Google Scholar 

  9. Sprangers, M. A., Sloan, J. A., Veenhoven, R., Cleeland, C. S., Halyard, M. Y., Abertnethy, A. P., et al. (2009). The establishment of the GENEQOL consortium to investigate the genetic disposition of patient-reported quality-of-life outcomes. Twin Research and Human Genetics, 12(3), 301–311.

    Article  PubMed  Google Scholar 

  10. Barsevick, A., Frost, M., Zwinderman, A., Hall, P., & Halyard, M. (2010). I’m so tired: Biological and genetic mechanisms of cancer-related fatigue. Quality of Life Research, 19(10), 1419–1427.

    Article  PubMed  Google Scholar 

  11. Shi, Q., Cleeland, C. S., Klepstad, P., Miaskowski, C., & Pedersen, N. L. (2010). Biological pathways and genetic variables involved in pain. Quality of Life Research, 19(10), 1407–1417.

    Article  PubMed  Google Scholar 

  12. Sprangers, M. A., Bartels, M., Veenhoven, R., Baas, F., Martin, N. G., Mosing, M., et al. (2010). Which patient will feel down, which will be happy? The need to study the genetic disposition of emotional states. Quality of Life Research, 19(10), 1429–1437.

    Article  PubMed  Google Scholar 

  13. WHO. (2002). Towards a common language for functioning, disability and health: ICF. Geneva: World Health Organization.

    Google Scholar 

  14. Sullivan, P. F., Daly, M. J., & O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nature Reviews Genetics, 13(8), 537–551.

    Article  PubMed  CAS  Google Scholar 

  15. Ware, J. E., Jr., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30(6), 473–483.

    Article  PubMed  Google Scholar 

  16. EuroQol Group. (1990). EuroQol–a new facility for the measurement of health-related quality of life. The EuroQol group. Health Policy, 16(3), 199–208.

    Article  Google Scholar 

  17. Burns, T., & Patrick, D. (2007). Social functioning as an outcome measure in schizophrenia studies. Acta Psychiatrica Scandinavica, 116(6), 403–418.

    Article  PubMed  CAS  Google Scholar 

  18. van der Mei, S. F., Krol, B., van Son, W. J., de Jong, P. E., Groothoff, J. W., & van den Heuvel, W. J. (2006). Social participation and employment status after kidney transplantation: A systematic review. Quality of Life Research, 15(6), 979–994.

    Article  PubMed  Google Scholar 

  19. Bonner, M. J., Hardy, K. K., Willard, V. W., Anthony, K. K., Hood, M., & Gururangan, S. (2008). Social functioning and facial expression recognition in survivors of pediatric brain tumors. Journal of Pediatric Psychology, 33(10), 1142–1152.

    Article  PubMed  Google Scholar 

  20. Avis, N. E., Smith, K. W., Hambleton, R. K., Feldman, H. A., Selwyn, A., & Jacobs, A. (1996). Development of the multidimensional index of life quality. A quality of life measure for cardiovascular disease. Medical Care, 34(11), 1102–1120.

    Article  PubMed  CAS  Google Scholar 

  21. The WHOQOL Group. (1998). Development of the World Health Organization WHOQOL-BREF quality of life assessment. The WHOQOL group. Psychological Medicine, 28(3), 551–558.

    Article  Google Scholar 

  22. Becker, M., Diamond, R., & Sainfort, F. (1993). A new patient focused index for measuring quality of life in persons with severe and persistent mental illness. Quality of Life Research, 2(4), 239–251.

    Article  PubMed  CAS  Google Scholar 

  23. Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.

    Article  PubMed  CAS  Google Scholar 

  24. Cella, D. F., Tulsky, D. S., Gray, G., Sarafian, B., Linn, E., Bonomi, A., et al. (1993). The Functional Assessment of Cancer Therapy scale: Development and validation of the general measure. Journal of Clinical Oncology, 11(3), 570–579.

    PubMed  CAS  Google Scholar 

  25. Fayers, P. M., & Machin, D. (2007). Quality of life: The assessment, analysis and interpretation of patient-reported outcomes. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  26. Herzog, A. R., Ofstedal, M. B., & Wheeler, L. M. (2002). Social engagement and its relationship to health. Clinics in Geriatric Medicine, 18(3), 593–609, ix.

    Google Scholar 

  27. Rasulo, D., Christensen, K., & Tomassini, C. (2005). The influence of social relations on mortality in later life: A study on elderly Danish twins. Gerontologist, 45(5), 601–608.

    Article  PubMed  Google Scholar 

  28. Tse, W. S., Rochelle, T. L., & Cheung, J. C. (2011). The relationship between personality, social functioning, and depression: A structural equation modeling analysis. International Journal of Psychology, 46(3), 234–240.

    Article  PubMed  Google Scholar 

  29. Lyyra, T. M., & Heikkinen, R. L. (2006). Perceived social support and mortality in older people. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 61(3), S147–S152.

    Article  Google Scholar 

  30. Neuhaus, E., Beauchaine, T. P., & Bernier, R. (2010). Neurobiological correlates of social functioning in autism. Clinical Psychology Review, 30(6), 733–748.

    Article  PubMed  Google Scholar 

  31. Bouchard, T. J., Jr., & Loehlin, J. C. (2001). Genes, evolution, and personality. Behavior Genetics, 31(3), 243–273.

    Article  PubMed  Google Scholar 

  32. McGue, M., Osler, M., & Christensen, K. (2010). Causal inference and observational research: The utility of twins. Perspective on Psychological Science, 5(5), 546–556.

    Article  Google Scholar 

  33. Boyce, C. J., & Wood, A. M. (2011). Personality prior to disability determines adaptation: Agreeable individuals recover lost life satisfaction faster and more completely. Psychological Science, 22(11), 1397–1402.

    Article  PubMed  Google Scholar 

  34. Wilson, I. B., & Cleary, P. D. (1995). Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. JAMA, 273(1), 59–65.

    Article  PubMed  CAS  Google Scholar 

  35. Singh-Manoux, A. (2005). Commentary: Modelling multiple pathways to explain social inequalities in health and mortality. International Journal of Epidemiology, 34(3), 638–639.

    Article  PubMed  Google Scholar 

  36. Johnson, W., Kyvik, K. O., Mortensen, E. L., Skytthe, A., Batty, G. D., & Deary, I. J. (2010). Education reduces the effects of genetic susceptibilities to poor physical health. International Journal of Epidemiology, 39(2), 406–414.

    Article  PubMed  Google Scholar 

  37. Ordoñana, J. R., Bartels, M., Rebollo-Mesa, I., Monteagudo, O., & Perez-Riquelme, F. (2010). Causes of individual differences in quality of life dimensions of the EQ-5D questionnaire. Paper presented at the 40th annual meeting of the behavior genetics association, Seoul.

  38. McGue, M., & Christensen, K. (2007). Social activity and healthy aging: A study of aging Danish twins. Twin Research and Human Genetics, 10(2), 255–265.

    Article  PubMed  Google Scholar 

  39. Harris, J. R. (2007). Genetics, social behaviors, social environments and aging. Twin Research and Human Genetics, 10(2), 235–240.

    Article  PubMed  Google Scholar 

  40. Gregory, A. M., Light-Hausermann, J. H., Rijsdijk, F., & Eley, T. C. (2009). Behavioral genetic analyses of prosocial behavior in adolescents. Developmental in Science, 12(1), 165–174.

    Article  Google Scholar 

  41. Knafo, A., & Plomin, R. (2006). Prosocial behavior from early to middle childhood: Genetic and environmental influences on stability and change. Developmental Psychology, 42(5), 771–786.

    Article  PubMed  Google Scholar 

  42. Kendler, K. S. (1997). Social support: A genetic-epidemiologic analysis. American Journal of Psychiatry, 154(10), 1398–1404.

    PubMed  CAS  Google Scholar 

  43. Boomsma, D. I., Cacioppo, J. T., Muthen, B., Asparouhov, T., & Clark, S. (2007). Longitudinal genetic analysis for loneliness in Dutch twins. Twin Research and Human Genetics, 10(2), 267–273.

    Article  PubMed  Google Scholar 

  44. Bartels, M., Cacioppo, J. T., Hudziak, J. J., & Boomsma, D. I. (2008). Genetic and environmental contributions to stability in loneliness throughout childhood. American Journal of Medical Genetic B Neuropsychiatry Genetics, 147(3), 385–391.

    Article  Google Scholar 

  45. Boomsma, D. I., Willemsen, G., Dolan, C. V., Hawkley, L. C., & Cacioppo, J. T. (2005). Genetic and environmental contributions to loneliness in adults: The Netherlands twin register study. Behavior Genetics, 35(6), 745–752.

    Article  PubMed  Google Scholar 

  46. Waaktaar, T., & Torgersen, S. (2012). Genetic and environmental causes of variation in perceived loneliness in young people. American Journal of Medical Genetic B Neuropsychiatry Genetics, 159(5), 580–588.

    Article  Google Scholar 

  47. Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2008). Behavioral genetics (5th ed.). New York: Worth Publishers.

    Google Scholar 

  48. Keller, M. C., Coventry, W. L., Heath, A. C., & Martin, N. G. (2005). Widespread evidence for non-additive genetic variation in Cloninger’s and Eysenck’s personality dimensions using a twin plus sibling design. Behavior Genetics, 35(6), 707–721.

    Article  PubMed  Google Scholar 

  49. Bratko, D., & Butkovic, A. (2007). Stability of genetic and environmental effects from adolescence to young adulthood: Results of Croatian longitudinal twin study of personality. Twin Research and Human Genetics, 10(1), 151–157.

    Article  PubMed  Google Scholar 

  50. Kandler, C., Riemann, R., & Kampfe, N. (2009). Genetic and environmental mediation between measures of personality and family environment in twins reared together. Behavior Genetics, 39(1), 24–35.

    Article  PubMed  Google Scholar 

  51. Flint, J., Greenspan, R. J., & Kendler, K. S. (2010). How genes influence behavior. Oxford: Oxford University Press.

    Google Scholar 

  52. McGrath, J. A., Avramopoulos, D., Lasseter, V. K., Wolyniec, P. S., Fallin, M. D., Liang, K. Y., et al. (2009). Familiality of novel factorial dimensions of schizophrenia. Archives of General Psychiatry, 66(6), 591–600.

    Article  PubMed  Google Scholar 

  53. Ronald, A., Happe, F., & Plomin, R. (2005). The genetic relationship between individual differences in social and nonsocial behaviours characteristic of autism. Developmental Science, 8(5), 444–458.

    Article  PubMed  Google Scholar 

  54. Anokhin, A. P., Golosheykin, S., & Heath, A. C. (2010). Heritability of individual differences in cortical processing of facial affect. Behavior Genetics, 40(2), 178–185.

    Article  PubMed  Google Scholar 

  55. Meyer-Lindenberg, A., Hariri, A. R., Munoz, K. E., Mervis, C. B., Mattay, V. S., Morris, C. A., et al. (2005). Neural correlates of genetically abnormal social cognition in Williams syndrome. Nature Neuroscience, 8(8), 991–993.

    Article  PubMed  CAS  Google Scholar 

  56. Stein, M. B., Goldin, P. R., Sareen, J., Zorrilla, L. T., & Brown, G. G. (2002). Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Archives of General Psychiatry, 59(11), 1027–1034.

    Article  PubMed  Google Scholar 

  57. Amaral, D. G. (2003). The amygdala, social behavior, and danger detection. Annals of the New York Academy of Sciences, 1000, 337–347.

    Article  PubMed  Google Scholar 

  58. Donaldson, Z. R., & Young, L. J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322(5903), 900–904.

    Article  PubMed  CAS  Google Scholar 

  59. Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12(9), 524–538.

    Article  PubMed  CAS  Google Scholar 

  60. Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25(49), 11489–11493.

    Article  PubMed  CAS  Google Scholar 

  61. Hollander, E., Bartz, J., Chaplin, W., Phillips, A., Sumner, J., Soorya, L., et al. (2007). Oxytocin increases retention of social cognition in autism. Biological Psychiatry, 61(4), 498–503.

    Article  PubMed  CAS  Google Scholar 

  62. Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54(12), 1389–1398.

    Article  PubMed  CAS  Google Scholar 

  63. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–676.

    Article  PubMed  CAS  Google Scholar 

  64. Rodrigues, S. M., Saslow, L. R., Garcia, N., John, O. P., & Keltner, D. (2009). Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proceedings of Natural Academy of Science USA, 106(50), 21437–21441.

    Article  CAS  Google Scholar 

  65. Tost, H., Kolachana, B., Hakimi, S., Lemaitre, H., Verchinski, B. A., Mattay, V. S., et al. (2010). A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proceedings of Natural Academy of Science USA, 107(31), 13936–13941.

    Article  CAS  Google Scholar 

  66. Thompson, R. J., Parker, K. J., Hallmayer, J. F., Waugh, C. E., & Gotlib, I. H. (2011). Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology, 36(1), 144–147.

    Article  PubMed  CAS  Google Scholar 

  67. Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2008). Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Social Cognitive and Affection in Neuroscience, 3(2), 128–134.

    Article  Google Scholar 

  68. Inoue, H., Yamasue, H., Tochigi, M., Abe, O., Liu, X., Kawamura, Y., et al. (2010). Association between the oxytocin receptor gene and amygdalar volume in healthy adults. Biological Psychiatry, 68(11), 1066–1072.

    Article  PubMed  CAS  Google Scholar 

  69. Kim, H. S., Sherman, D. K., Sasaki, J. Y., Xu, J., Chu, T. Q., Ryu, C., et al. (2010). Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proceedings of Natural Academy of Science USA, 107(36), 15717–15721.

    Article  CAS  Google Scholar 

  70. Yrigollen, C. M., Han, S. S., Kochetkova, A., Babitz, T., Chang, J. T., Volkmar, F. R., et al. (2008). Genes controlling affiliative behavior as candidate genes for autism. Biological Psychiatry, 63(10), 911–916.

    Article  PubMed  CAS  Google Scholar 

  71. Lerer, E., Levi, S., Salomon, S., Darvasi, A., Yirmiya, N., & Ebstein, R. P. (2008). Association between the oxytocin receptor (OXTR) gene and autism: Relationship to Vineland Adaptive Behavior scales and cognition. Molecular Psychiatry, 13(10), 980–988.

    Article  PubMed  CAS  Google Scholar 

  72. Wassink, T. H., Piven, J., Vieland, V. J., Pietila, J., Goedken, R. J., Folstein, S. E., et al. (2004). Examination of AVPR1a as an autism susceptibility gene. Molecular Psychiatry, 9(10), 968–972.

    Article  PubMed  CAS  Google Scholar 

  73. Walum, H., Westberg, L., Henningsson, S., Neiderhiser, J. M., Reiss, D., Igl, W., et al. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proceedings of Natural Academy of Science USA, 105(37), 14153–14156.

    Article  CAS  Google Scholar 

  74. Meyer-Lindenberg, A., Kolachana, B., Gold, B., Olsh, A., Nicodemus, K. K., Mattay, V., et al. (2009). Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Molecular Psychiatry, 14(10), 968–975.

    Article  PubMed  CAS  Google Scholar 

  75. Munafo, M. R., Yalcin, B., Willis-Owen, S. A., & Flint, J. (2008). Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biological Psychiatry, 63(2), 197–206.

    Article  PubMed  CAS  Google Scholar 

  76. Lawford, B. R., Young, R., Noble, E. P., Kann, B., & Ritchie, T. (2006). The D2 dopamine receptor (DRD2) gene is associated with co-morbid depression, anxiety and social dysfunction in untreated veterans with post-traumatic stress disorder. European Psychiatry, 21(3), 180–185.

    Article  PubMed  Google Scholar 

  77. Marino, C., Vanzin, L., Giorda, R., Frigerio, A., Lorusso, M. L., Nobile, M., et al. (2004). An assessment of transmission disequilibrium between quantitative measures of childhood problem behaviors and DRD2/Taql and DRD4/48 bp-repeat polymorphisms. Behavior Genetics, 34(5), 495–502.

    Article  PubMed  Google Scholar 

  78. Godlewska, B. R., Olajossy-Hilkesberger, O., Limon, J., & Landowski, J. (2010). Ser9Gly polymorphism of the DRD3 gene is associated with worse premorbid social functioning and an earlier age of onset in female but not male schizophrenic patients. Psychiatry Research, 177(1–2), 266–267.

    Article  PubMed  CAS  Google Scholar 

  79. Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297(5580), 400–403.

    Article  PubMed  CAS  Google Scholar 

  80. Munafo, M. R., Brown, S. M., & Hariri, A. R. (2008). Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biological Psychiatry, 63(9), 852–857.

    Article  PubMed  CAS  Google Scholar 

  81. Tse, W. S., & Bond, A. J. (2003). Reboxetine promotes social bonding in healthy volunteers. Journal of Psychopharmacolgy, 17(2), 189–195.

    Article  CAS  Google Scholar 

  82. James, B. D., Wilson, R. S., Barnes, L. L., & Bennett, D. A. (2011). Late-life social activity and cognitive decline in old age. Journal of the International Neuropsychology Society, 17(6), 998–1005.

    Article  Google Scholar 

  83. Small, B. J., Dixon, R. A., McArdle, J. J., & Grimm, K. J. (2012). Do changes in lifestyle engagement moderate cognitive decline in normal aging? Evidence from the Victoria Longitudinal Study. Neuropsychology, 26(2), 144–155.

    Google Scholar 

  84. Harris, S. E., & Deary, I. J. (2011). The genetics of cognitive ability and cognitive ageing in healthy older people. Trends in Cognitive Sciences, 15(9), 388–394.

    PubMed  Google Scholar 

  85. Lee, T., Henry, J. D., Trollor, J. N., & Sachdev, P. S. (2010). Genetic influences on cognitive functions in the elderly: A selective review of twin studies. Brain Research Reviews, 64(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  86. DiLalla, L. F., Elam, K. K., & Smolen, A. (2009). Genetic and gene-environment interaction effects on preschoolers’ social behaviors. Developmental Psychobiology, 51(6), 451–464.

    Article  PubMed  Google Scholar 

  87. Creswell, K. G., Sayette, M. A., Manuck, S. B., Ferrell, R. E., Hill, S. Y., & Dimoff, J. D. (2012). DRD4 polymorphism moderates the effect of alcohol consumption on social bonding. PLoS ONE, 7(2), e28914.

    Article  PubMed  CAS  Google Scholar 

  88. Kiser, D., Steemers, B., Branchi, I., & Homberg, J. R. (2012). The reciprocal interaction between serotonin and social behaviour. Neuroscience and Biobehavioral Reviews, 36(2), 786–798.

    Article  PubMed  CAS  Google Scholar 

  89. Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168(10), 1041–1049.

    Article  PubMed  Google Scholar 

  90. McCrae, R. R., Scally, M., Terracciano, A., Abecasis, G. R., & Costa, P. T., Jr. (2010). An alternative to the search for single polymorphisms: Toward molecular personality scales for the five-factor model. Journal of Personality and Social Psychology, 99(6), 1014–1024.

    Article  PubMed  Google Scholar 

  91. Hewitt, J. K. (2012). Editorial policy on candidate gene association and candidate gene-by-environment interaction studies of complex traits. Behavior Genetics, 42(1), 1–2.

    Article  PubMed  Google Scholar 

  92. Pearson, T. A., & Manolio, T. A. (2008). How to interpret a genome-wide association study. JAMA, 299(11), 1335–1344.

    Article  PubMed  CAS  Google Scholar 

  93. Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., et al. (2010). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15(6), 647–656.

    Article  PubMed  CAS  Google Scholar 

  94. de Moor, M. H., Costa, P. T., Terracciano, A., Krueger, R. F., de Geus, E. J., Toshiko, T., et al. (2012). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17(3), 337–349.

    Google Scholar 

  95. Gillespie, N. A., Zhu, G., Evans, D. M., Medland, S. E., Wright, M. J., & Martin, N. G. (2008). A genome-wide scan for Eysenckian personality dimensions in adolescent twin sibships: Psychoticism, extraversion, neuroticism, and lie. Journal of Personality, 76(6), 1415–1446.

    PubMed  Google Scholar 

  96. Bosker, F. J., Hartman, C. A., Nolte, I. M., Prins, B. P., Terpstra, P., Posthuma, D., et al. (2011). Poor replication of candidate genes for major depressive disorder using genome-wide association data. Molecular Psychiatry, 16(5), 516–532.

    Article  PubMed  CAS  Google Scholar 

  97. Attia, J., Ioannidis, J. P., Thakkinstian, A., McEvoy, M., Scott, R. J., Minelli, C., et al. (2009). How to use an article about genetic association: A: Background concepts. JAMA, 301(1), 74–81.

    Article  PubMed  CAS  Google Scholar 

  98. John, O. P., Robins, R. W., & Pervin, L. A. (2008). Handbook of personality: Theory and research (3rd ed.). New York: Guilford Press.

    Google Scholar 

Download references

Acknowledgments

We are grateful to all members of the GENEQOL Consortium for their invaluable contribution to the consortium activities.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Juan R. Ordoñana.

Appendices

Appendix 1: Glossary

Allelic association: An association between allelic frequencies and a phenotype (Allele: an alternative form of a gene at a locus) [47].

Candidate gene: A gene whose function suggests that it might be associated with a trait [47].

Chromosome: Self-replicating structures in the nucleus of a cell that carry the genetic information [97].

Gene: The basic unit of inheritance. A sequence of DNA bases that code for a particular product [47].

Genome:The entire collection of genetic information (or genes) that an organism possesses [97].

Genome-wide association study (GWAS): A study that evaluates association of genetic variation with outcomes or traits of interest by using 100,000–1,000,000 markers or more across the genome [92, 97].

Genotype: The genetic constitution of an individual [97].

Heritability: The proportion of the phenotypic differences among individuals that can be attributed to genetic differences in a particular population [47].

Locus (plural, loci): The site(s) on a chromosome at which the gene for a particular trait is located [97].

Molecular Personality Scale (MPS): A set of SNPs that are collectively associated with personality traits [90].

Personality traits: Relatively enduring individual differences in behavior that are stable across time and across situations [47, 98].

Phenotype: An observed characteristic of an individual that results from the combined effects of genotype and environment [47].

Polymorphism: The existence of two or more variants of a gene, occurring in a population, with at least 1% frequency of the less common variant (cf mutation) [97].

Single Nucleotide Polymorphism (SNP): The most common type of DNA polymorphism which involves a mutation in a single nucleotide [47].

Twin study: Study comparing the resemblance of identical and fraternal twins to estimate genetic and environmental components of variance [47].

Appendix 2: GENEQOL consortium participants per February 2012

Amy P. Abernethy, Duke Cancer Care Research Program, Duke University Medical Center, Durham, NC, US; Frank Baas, Laboratory of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Andrea M. Barsevick, Nursing Research and Education, Fox Chase Cancer Center, Philadelphia, PA, US; Meike Bartels, Department of Biological Psychology, VU University, Amsterdam, the Netherlands; Dorret I. Boomsma, Department of Biological Psychology, VU University, Amsterdam, the Netherlands; Andrew Bottomley, Quality of Life Department, EORTC Data Center, Brussels, Belgium; Michael Brundage, Department of Oncology, Queen’s University Cancer Centre of Southeastern Ontario, Kingston, Ontario, Canada; David Cella, Department of Medical Social Sciences, Feinberg School of Medicine, Chicago, IL, US; Cynthia Chauhan, Cancer Advocay, Wichita, KS, US; Charles S. Cleeland, Department of Symptom Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX, US; Corneel Coens, Quality of Life Department, EORTC Data Center, Brussels, Belgium; Amylou C. Dueck, Section of Biostatistics, Mayo Clinic, Scottsdale, AZ, US; Marlene H. Frost, Women’s Cancer Program, Mayo Clinic, Rochester, MN, US; Per Hall, Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden; Michele Y. Halyard, Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ, US; Pål Klepstad, Department of Intensive Care Medicine, St Olavs University Hospital, Norwegian University of Technology and Science, Trondheim, Norway; Nicholas G. Martin, Queensland Institute of Medical Research, Brisbane, Australia; Christine Miaskowski, School of Nursing, University of California, San Francisco, CA, US; Miriam Mosing, Queensland Institute of Medical Research, Brisbane, Australia; Benjamin Movsas, Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, US; Cornelis J. F. Van Noorden, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Joao Ricardo Oliveira, Department of Neuropsychiatry, Federal University of Pernambuco, Recife—Pernambuco, Brazil; Juan Ordoñana, Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, Spain; Donald L. Patrick, Department of Health Services, University of Washington, Seattle, WA, US; Nancy L. Pedersen, Department of Medical Epidemiology and Biostatistics, Karolinska; Institute, Stockholm, Sweden; Hein Raat, Preventive Youth Health Care, Erasmus Medical Center, Rotterdam, the Netherlands; Bryce Reeve, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, US; Mary E. Ropka, Cancer Prevention and Control Program, Fox Chase Cancer Center, Cheltenham, PA, US; Quiling Shi, Department of Symptom Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX, US; Gen Shinozaki, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, US; Jasvinder A. Singh, Minneapolis Veterans Affairs Medical Center and University of Minnesota, Minneapolis, MN and Mayo Clinic College of Medicine, Rochester, MN, US; Jeff A. Sloan, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, US; Mirjam A. G. Sprangers, Department of Medical Psychology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Dick Swaab, The Netherlands Institutes for Neuroscience, Amsterdam, the Netherlands; Jayant Talwalker, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, US, Ruut Veenhoven, Faculty of Social Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands; Gert G. Wagner, Berlin University of Technology, Max Planck Institute for Human Development and German Institute for Economic Research, Berlin, Germany; Ping Yang, Department of Genetic Epidemiology, Mayo Clinic, Rochester, MN, US; Ailko H. Zwinderman, Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordoñana, J.R., Bartels, M., Boomsma, D.I. et al. Biological pathways and genetic mechanisms involved in social functioning. Qual Life Res 22, 1189–1200 (2013). https://doi.org/10.1007/s11136-012-0277-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-012-0277-5

Keywords

Navigation