Skip to main content
Log in

Measures of relative importance for health-related quality of life

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

In health-related quality of life (HRQOL) studies, data are often collected on multiple domains for two or more groups of study participants. Quantitative measures of relative importance, which are used to rank order the domains based on their ability to discriminate between groups, are an alternative to multiple tests of significance on the group differences. This study describes relative importance measures based on logistic regression (LR) and multivariate analysis of variance (MANOVA) models.

Methods

Relative importance measures are illustrated using data from the Manitoba Inflammatory Bowel Disease (IBD) Cohort Study. Study participants with self-reported active (n = 244) and inactive (n = 105) disease were compared on 12 HRQOL domains from the Inflammatory Bowel Disease Questionnaire (IBDQ) and Medical Outcomes Study 36-item Short-Form (SF-36) Questionnaire.

Results

All but two relative importance measures ranked the IBDQ bowel symptoms and emotional health domains as most important.

Conclusions

MANOVA-based importance measures are recommended for multivariate normal data and when group covariances are equal, while LR measures are recommended for non-normal data and when the correlations among the domains are small. Relative importance measures can be used in exploratory studies to identify a small set of domains for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADRC:

Adjusted discriminant ratio coefficient

API:

Adjusted Pratt’s Index

BP:

Bodily pain

BS:

Bowel symptoms

DDA:

Descriptive discriminant analysis

DRC:

Discriminant ratio coefficient

EH:

Emotional health

GH:

General health

HRQOL:

Health-related quality of life

IBD:

Inflammatory bowel disease

IBDQ:

Inflammatory Bowel Disease Questionnaire

LR:

Logistic regression

MANOVA:

Multivariate analysis of variance

MH:

Mental health

OLS:

Ordinary least squares

PF:

Physical functioning

PI:

Pratt’s index

RE:

Role emotional

RP:

Role physical

RW:

Relative weight

RRW:

Rescaled relative weight

SDFC:

Standardized discriminant function coefficient

SF:

Social functioning

SF-36:

36-Item Short Form Questionnaire

SLRC:

Standardized logistic regression coefficient

SS:

Systemic symptoms

VT:

Vitality

References

  1. Fairclough, D. L. (2002). Design and analysis of quality of life studies in clinical trials. New York: Chapman & Hall.

    Google Scholar 

  2. Sheehan-Holt, J. K. (1998). MANOVA simultaneous test procedures: The power and robustness of restricted multivariate contrasts. Journal of Educational and Psychological Measurement, 58, 861–881.

    Article  Google Scholar 

  3. Wu, Y., Hu, W., Xia, Y., Ma, J., Liu, M., & Cui, N. (2006). Quality of life of nasopharyngeal carcinoma survivors in Mainland China. Quality of Life Research, 16, 65–74.

    Article  PubMed  Google Scholar 

  4. Laaksonen, C., Aromaa, M., Heinonen, O. J., Koivusilta, L., Koski, P., Suominen, S., et al. (2008). Health related quality of life in 10-year-old school children. Quality of Life Research, 17, 1049–1054.

    Article  PubMed  Google Scholar 

  5. Dunn, W. S., Mount, M. K., Barrick, M. R., & Ones, D. S. (1995). Relative importance of personality and general mentality ability in managers’ judgments of applicant qualifications. Journal of Applied Psychology, 80, 500–509.

    Article  PubMed  CAS  Google Scholar 

  6. Hobson, C. J., & Gibson, F. W. (1983). Policy capturing as an approach to understanding and improving performance appraisal: A review of the literature. Academy of Management Review, 8, 640–649.

    PubMed  CAS  Google Scholar 

  7. Healy, M. J. R. (1990). Measuring importance. Statistics in Medicine, 9, 633–637.

    Article  PubMed  CAS  Google Scholar 

  8. Curran, D., Molenberghs, G., Fayers, P. M., & Machin, D. (1998). Incomplete quality of life data in randomized trials: Missing forms. Statistics in Medicine, 17, 697–709.

    Article  PubMed  CAS  Google Scholar 

  9. Rose, M. S., & Koshman, M. L. (1999). Statistical issues encountered in the comparison of health-related quality of life in diseased patients to published general population norms: Problems and solutions. Journal of Clinical Epidemiology, 52, 405–412.

    Article  PubMed  CAS  Google Scholar 

  10. Beaumont, J. L., Lix, L. M., Yost, K. J., & Hahn, E. A. (2006). Application of robust statistical methods for sensitivity analysis of health-related quality of life outcomes. Quality of Life Research, 15, 349–356.

    Article  PubMed  Google Scholar 

  11. Menard, S. (1995). Applied logistic regression analysis. Thousand Oaks, CA: Sage.

    Google Scholar 

  12. Thomas, D. R., Zumbo, B. D., Zhu, P., & Dutta, S. (2008). On measuring the relative importance of explanatory variables in a logistic regression. Journal of Modern Applied Statistical Methods, 7, 21–38.

    Google Scholar 

  13. Traxel, N. M., & Azen, R. (2006). Predictor importance in logistic regression: An extension of dominance analysis. Poster presented at the 114th annual convention of the American psychological association, New Orleans, LA.

  14. Tonidandale, S., & LeBreton, J. M. (2010). Determining the relative importance of predictors in logistic regression: An extension of relative weight analysis. Organizational Research Methods, 13, 767–781.

    Article  Google Scholar 

  15. Huberty, C. J., & Wisenbaker, J. M. (1992). Variable importance in multivariate group comparisons. Journal of Educational Statistics, 17, 75–91.

    Article  Google Scholar 

  16. Thomas, D. R. (1992). Interpreting discriminant functions: A data analytic approach. Multivariate Behavioral Research, 27, 335–362.

    Article  Google Scholar 

  17. Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. Journal of Abnormal and Social Psychology, 65, 145–153.

    Article  PubMed  CAS  Google Scholar 

  18. Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: Applications, interpretations, and limitations. Educational Psychology, 25, 241–286.

    Google Scholar 

  19. Agresti, A. (1996). An introduction to categorical data analysis. New York: Wiley.

    Google Scholar 

  20. Menard, S. (2004). Six approaches to calculating standardized logistic regression coefficients. The American Statistician, 58, 218–223.

    Article  Google Scholar 

  21. Agresti, A., & Finlay, B. (1986). Statistical methods for the social sciences (2nd ed.). San Francisco: Dellen/Macmillan.

    Google Scholar 

  22. Kaufman, R. L. (1996). Comparing effects in dichotomous logistic regression: A variety of standardized coefficients. Social Science Quarterly, 77, 90–110.

    Google Scholar 

  23. Nagelkerke, N. J. D. (1991). A note on a general definition of coefficient of determination. Biometrika, 78, 691–692.

    Article  Google Scholar 

  24. Cox, D. R., & Snell, E. J. (1989). The analysis of binary data (2nd ed.). London: Chapman and Hall.

    Google Scholar 

  25. Estrella, A. (1998). A new measure of fit for equations with dichotomous dependent variables. Journal of Business and Economic Statistics, 16, 198–205.

    Article  Google Scholar 

  26. Pratt, J. W. (1987). Dividing the indivisible: Using simple symmetry to partition variance explained. In T. Pukkila & S. Puntanen (Eds.), Proceedings of the second international conference in statistics (pp. 245–260). Tampere, Finland: University of Tampere.

    Google Scholar 

  27. Thomas, D. R., Hughes, E., & Zumbo, B. D. (1998). On variable importance in linear regression. Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, 45, 253–275.

    Google Scholar 

  28. Ochieng, C. O., & Zumbo, B. D. (2001). Examination of a variable ordering index in linear regression models: An assessment of the relative Pratt index in Likert data. Paper presented at the Bob Conry conference on measurement evaluation and research and methodology, Vancouver, Canada.

  29. Witherill, G. G. (1986). Regression analysis with applications. London: Chapman & Hall.

    Google Scholar 

  30. Azen, R., & Budescu, D. V. (2003). Comparing predictors in multivariate regression models: An extension of dominance analysis. Journal of Educational and Behavioral Statistics, 31, 157–180.

    Article  Google Scholar 

  31. Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35, 1–19.

    Article  Google Scholar 

  32. Thomas, D. R., & Zumbo, B. D. (1996). Using a measure of variable importance to investigate the standardization of discriminant coefficients. Journal of Educational and Behavioral Statistics, 21, 110–130.

    Google Scholar 

  33. Huberty, C. J., & Olejnik, S. (2006). Applied MANOVA and discriminant analysis. Hoboken, New Jersey: Wiley.

    Book  Google Scholar 

  34. Pohar, M., Blas, M., & Turk, S. (2004). Comparison of logistic regression and linear discriminant analysis: A simulation study. Metodoloski zveski, 1, 143–161.

    Google Scholar 

  35. Jennrich, R. I. (1977). Stepwise discriminant analysis. In K. Enslein, A. Ralston, & H. S. Wilf (Eds.), Mathematical methods for digital computers (Vol. 3). New York: Wiley.

    Google Scholar 

  36. Rencher, A. C. (1992). Interpretation of canonical discriminant functions, canonical variates, and principal components. The American Statistician, 46, 217–225.

    Article  Google Scholar 

  37. Finch, W. H., & Laking, T. (2008). Evaluation of the use of standardized weights for interpreting results from a descriptive discriminant analysis. Multiple Linear Regression Viewpoints, 34, 19–34.

    Google Scholar 

  38. Gibbons, L. B., & Hosmer, D. W. (1991). Conditional logistic regression with missing data. Communications in Statistics, Part B, 20, 109–120.

    Google Scholar 

  39. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  40. SAS Institute Inc. (2008). SAS/STAT user’s guide, version 9.2. Cary, NC: SAS Institute Inc.

    Google Scholar 

  41. Lix, L. M., Graff, L. A., Walker, J. R. L., et al. (2008). Longitudinal study of quality of life and psychological functioning for active, fluctuating, and inactive disease patterns. Inflammatory Bowel Diseases, 14, 1575–1584.

    Article  PubMed  Google Scholar 

  42. Graff, L. A., Walker, J. R., Lix, L. M., et al. (2006). The relationship of inflammatory bowel disease type and activity to psychological functioning and quality of life. Clinical Gastoroenterology and Hepatology, 4, 1491–1501.

    Article  Google Scholar 

  43. Clara, I., Lix, L. M., Walker, J. R., et al. (2009). The Manitoba IBD index: Evidence for a new and simple indicator of IBD activity. American Journal of Gastroenterology, 104, 1754–1763.

    Article  PubMed  Google Scholar 

  44. Guyatt, G. H., Mitchell, A., Irvine, E. J., et al. (1989). A new measure of health status for clinical trials in inflammatory bowel disease. Gastroenterology, 96, 804–810.

    PubMed  CAS  Google Scholar 

  45. Ware, J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30, 473–483.

    Article  PubMed  Google Scholar 

  46. Irvine, E. J. (1996). Effects of budesonide therapy on quality of life in active Crohn′s disease. Respiratory Clinical Forums, 18, 81–89.

    Google Scholar 

  47. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.

    Google Scholar 

  48. LeBreton, J. M., & Tonidandel, S. (2008). Multivariate relative importance: Extending relative weight analysis to ultivariate criterion spaces. Journal of Applied Psychology, 93, 329–345.

    Article  PubMed  Google Scholar 

  49. Lievens, F., Van Hoye, G., & Schreurs, B. (2005). Examining the relationship between employer knowledge dimensions and organizational attractiveness: An application in a military context. Journal of Occupational and Organizational Psychology, 78, 553–572.

    Article  Google Scholar 

  50. Glomb, T. M., Kammeyer-Mueller, J. D., & Rotundo, M. (2004). Emotional labor demands and compensating wage differentials. Journal of Applied Psychology, 84, 700–714.

    Article  Google Scholar 

  51. Hawkins, D. M. (1981). A new test for multivariate normality and homoscedasticity. Technometrics, 23, 105–110.

    Article  Google Scholar 

  52. Box, G. E. P. (1949). A general distribution theory for a class of likelihood criteria. Biometrika, 36, 317–346.

    PubMed  CAS  Google Scholar 

  53. Mardia, K. V. (1980). Tests of univariate and multivariate normality. In P. R. Krishnaiah (Ed.), Handbook of statistics (Vol. 1, pp. 279–320). Amsterdam: North-Holland.

    Google Scholar 

  54. Shapiro, S. S., Wilk, M. B., & Chen, H. J. (1968). A comparative study of various tests for normality. Journal of the American Statistical Association, 63, 1343–1372.

    Article  Google Scholar 

  55. Huberty, C. J. (1975). The stability of three indices of relative variable contribution in discriminant analysis. Journal of Experimental Education, 44, 59–64.

    Google Scholar 

  56. Dalgleish, L. I. (1994). Discriminant analysis: Statistical inference using the jackknife and bootstrap procedures. Psychological Bulletin, 116, 498–508.

    Article  Google Scholar 

  57. Guyatt, G. H., Osoba, D., Wu, A. W., Wyrwich, K. W., Norman, G. R., & the Clinical Significance Consensus Meeting Group. (2002). Methods to explain the clinical significance of health status measures. Mayo Clinic Proceedings, 77, 371–383.

    Article  PubMed  Google Scholar 

  58. Wyrwich, K. W., Nienaber, N. A., Tierney, W. M., & Wolinsky, F. D. (1999). Linking clinical relevance and statistical significance in evaluating intra-individual changes in health-related quality of life. Medical Care, 37, 469–478.

    Article  PubMed  CAS  Google Scholar 

  59. Kim, K., & Timm, N. (2007). Univariate and multivariate general linear models: Theory and applications with SAS (2nd ed.). New York: Chapman & Hall/CRC.

    Google Scholar 

  60. Benjamini, Y., & Hochberg, Y. (1997). Multiple hypotheses testing with weights. Scandinavian Journal of Statistics, 24, 407–418.

    Article  Google Scholar 

  61. Maurer, W., Hothorn, L. A., & Lechmacher, W. (1995). Multiple comparisons in drug clinical trials and preclinical assays: A priori ordered hypotheses. In J. Vollman (Ed.), Biometrie in der chemische-pharmazeutichen Industrie (Vol. 6). Stuttgart: Fischer Verlag.

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Canadian Institutes of Health Research (CIHR) Vanier Graduate Scholarship to the first author, funding from the Manitoba Health Research Council and a CIHR New Investigator Award to the second author, funding from a Crohn’s and Colitis Foundation of Canada Research Investigator Award and the Bingham Chair in Gastroenterology to the last author and funding from a CIHR Operating Grant to the research team.

Conflict of interest

Dr. Lix has received funding from Amgen in the form of an unrestricted research grant. In the past year, Dr. Bernstein has received consulting fees from Abbott Canada and an unrestricted educational grant from Axcan Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Lix.

Appendices

Appendix 1: Additional formulae used in calculating measures of relative importance

Measures based on the LR model

The estimated LR coefficient for the kth domain (k = 1,…, m) can be written as

$$ \hat{\beta }_{k} = {\frac{{r_{{\log {\text{it}}(\hat{p})k}} - R_{( - k)}^{2} R_{k|( - k)}^{2} }}{{1 - R_{k|( - k)}^{2} }}}, $$
(12)

where \( r_{{\log {\text{it}}(\hat{p})k}} \) is the correlation between the kth domain and the logit of the predicted probabilities, \( R_{( - k)}^{2} \) is the R 2 value for a LR model in which the kth domain is excluded, and \( R_{k|( - k)}^{2} \) is the R 2 value for a model in which the kth domain is regressed on the other (m − 1) domains.

Pratt’s index can also be expressed as,

$$ d_{k} = {\frac{{{\hat{\mathbf{\varvec{\upbeta}}}}^{\text{T}}{\mathbf{X}}^{\text{T}} {\mathbf{QX}}_{[k]} \hat{\beta }_{k}}}{{{\hat{\mathbf{\varvec{\upbeta}}}}^{\text{T}}{\mathbf{X}}^{\text{T}} {{\mathbf{QX}\hat{\varvec{\upbeta}}}}}}},$$
(13)

where X is the N × m data matrix, X [k] is the N × 1 vector of measurements on the kth domain, \( {\hat{\mathbf{\varvec{\upbeta}}}} \) is a m × 1 vector of estimated unstandardized LR coefficients, \( {\mathbf{Q}} = {\mathbf{I}}_{N} - \left( {{\mathbf{1}}_{N}{\mathbf{1}}_{N}^{\text{T}} /N} \right) \), I N is a N × N identity matrix, 1  N is a N × 1 matrix of ones, and T is the transpose operator.

Measures based on the MANOVA model

The vectors of discriminant function coefficients corresponds to the eigenvectors associated with E −1 H, where

$$ \mathbf{E} =\sum\limits_{j = 1}^{2} {\sum\limits_{i = 1}^{{n_{j} }} {\left( {{\mathbf{X}}_{ij} - {\bar{\mathbf{X}}}_{j}} \right)} \left( {{\mathbf{X}}_{ij} - {\bar{\mathbf{X}}}_{j} }\right)^{\text{T}} } , $$
(14)

is the error sum of squares and cross product matrix, and

$$ {\mathbf{H}} = \sum\limits_{j = 1}^{2} {n_{j} \left( {{\mathbf{X}}_{j} - {\bar{\mathbf{X}}}} \right)\left( {{\mathbf{X}}_{j} - {\bar{\mathbf{X}}}} \right)^{\text{T}} } , $$
(15)

is the hypothesis sum of squares and cross product matrix. The number of statistically significant discriminant functions is c = min (m, g − 1). The discriminant function score, z ij , for the ith study participant in the jth (i = 1,…, n j ; j = 1, 2) group is,

$$ z_{ij} = {\hat{\mathbf{a}}\mathbf{X}}_{ij} . $$
(16)

The discriminant function coefficient for the kth variable can also be expressed as

$$ \hat{a}_{k} = - \log \left( {{\frac{{n_{2} }}{{n_{1} }}}}\right) - \frac{1}{2}\left( {{\bar{\mathbf{X}}}_{1} +{\bar{\mathbf{X}}}_{2} } \right)^{T} \text{\bf{S}}^{ - 1} \left({{\bar{\mathbf{X}}}_{1} + {\bar{\mathbf{X}}}_{2} } \right) + u_{k}$$
(17)

where \( u_{k} \) is the kth element of \( \text{\bf{S}}^{ - 1} \left( {{\bar{\mathbf{X}}}_{1} -{\bar{\mathbf{X}}}_{2} } \right) \), S is the pooled sample covariance matrix, and \( \overline{X}_{j} \) is the vector of means for the jth group.An equivalent formula for computing the F-to-remove statistic for the kth domain is

$$ F_{(k)} = {\frac{{k_{2} (\hat{a}_{k} /s_{(kk)} )^{2} }}{{(\bar{z}_{1} - \bar{z}_{2} ) + k_{3} - (\hat{a}_{k} /s_{(kk)} )^{2} }}}. $$
(18)

where \( k_{2} = (n_{1} + n_{2} - 2 - m),\,k_{3} = (n_{1} + n_{2} )(n_{1} + n_{2} )/n_{1} n_{2} ,\,\hat{a}_{k} \) is the discriminant function coefficient for the kth domain, \( \bar{z}_{1} \,{\text{and}}\,\bar{z}_{2} \) are the group means for the discriminant function score corresponding to \( {\hat{\mathbf{a}}} \), and \( s_{(kk)} \) is the positive square root of the kth diagonal element of the inverse of E, the error sums of square and cross product matrix.

Appendix 2

See Table 5.

Table 5 Correlations among HRQOL domains for active and inactive disease groups

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajobi, T.T., Lix, L.M., Clara, I. et al. Measures of relative importance for health-related quality of life. Qual Life Res 21, 1–11 (2012). https://doi.org/10.1007/s11136-011-9914-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-011-9914-7

Keywords

Navigation