Skip to main content

Advertisement

Log in

Have your cake and eat it too: PLSe2 = ML + PLS

  • Published:
Quality & Quantity Aims and scope Submit manuscript

Abstract

PLSe1 and PLSe2 methods were developed in 2013. While the performance of PLSe1 under normality and non-normality conditions has been confirmed, the performance of PLSe2, proposed to provide an avenue for the resurrection of PLS as a fully justified statistical methodology, has not yet been verified under non-normality condition. For this reason, our study aims at testing the performance of PLSe2 with non-normal data based on a Monte Carlo simulation using a simple and a complex model. In addition, it aims at providing a step-by-step visual guideline on how to apply this method in estimating a simple mediation model using EQS 6.4. The results of the Monte Carlo simulations across different numbers of replications and sample sizes provided substantial support for the performance of PLSe2 under non-normality conditions since the produced estimates were unbiased and virtually identical to the parameters resulted from the traditional ML estimation. In addition, we provided evidence about the suitability of different robust test statistics for the purpose of model evaluation based on our simulation results. Regarding the empirical example, we estimated a mediation model using ML, PLSe2, and PLSc estimators, compared the results across these methods, and provided further support for our PLSe2 and ML results through running a resampling bootstrap simulation. Overall, while we empirically validated the PLSe2 method using Monte Carlo simulations, our findings suggest that PLSe2 has the advantages of both ML and PLS and performs well under non-normality (and normality) conditions, thereby suggesting it as the methodology of choice for model specification, estimation, and evaluation in social sciences empirical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of the empirical example in this study are openly available in HARVARD DATAVERSE at https://doi.org/10.7910/DVN/TNGALP.

Notes

  1. In the measurement model displayed in matrix format, ηi are factors; λi,j are factor loadings; yi are equations for the items; and εi are the residuals of the equations.

  2. In the structural model displayed in matrix format, ηi are factors; βi,j are path coefficients; and ζi are disturbance terms of the equations.

  3. EQS supports model-based and resampling bootstrap simulations (Bentler 2006). The procedure of running the resampling bootstrap simulations has not been illustrated as they were not the core objective of this study. However, no convergence problems occurred in the replications (100% success with no condition code).

References

  • Becker, J.-M., Klein, K., Wetzels, M.: Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models. Long Range Plan. 45(5–6), 359–394 (2012). https://doi.org/10.1016/j.lrp.2012.10.001

    Article  Google Scholar 

  • Becker, J.-M., Rai, A., Ringle, C.M., Völckner, F.: Discovering unobserved heterogeneity in structural equation models to avert validity threats. MIS Q. 37(3), 665–694 (2013)

    Article  Google Scholar 

  • Benitez, J., Henseler, J., Castillo, A., Schuberth, F.: How to perform and report an impactful analysis using partial least squares: guidelines for confirmatory and explanatory IS research. Inf. Manag. (2019). https://doi.org/10.1016/j.im.2019.05.003

    Article  Google Scholar 

  • Benitez, J., Henseler, J., Roldán, J.L.: How to address endogeneity in partial least squares path modeling. Paper presented at the Twenty-Second Americas Conference on Information Systems, San Diego (2016)

  • Bentler, P.M.: Multivariate analysis with latent variables: causal modeling. Annu. Rev. Psychol. 31(1), 419–456 (1980). https://doi.org/10.1146/annurev.ps.31.020180.002223

    Article  Google Scholar 

  • Bentler, P.M.: EQS 6 structural equations program manual. Multivariate Software, Inc, Encino, CA (2006)

    Google Scholar 

  • Bentler, P.M., Dijkstra, T.K.: Efficient estimation via linearization in structural models. In: Krishnaiah, P.R. (ed.) Multivariate Analysis, pp. 9–42. North-Holland, Amsterdam (1985)

    Google Scholar 

  • Bentler, P.M., Huang, W.: On components, latent variables, PLS and simple methods: reactions to Rigdon’s rethinking of PLS. Long Range Plan. 47(3), 138–145 (2014). https://doi.org/10.1016/j.lrp.2014.02.005

    Article  Google Scholar 

  • Bernerth, J.B., Aguinis, H.: A critical review and best-practice recommendations for control variable usage. Pers. Psychol. 69(1), 229–283 (2016). https://doi.org/10.1111/peps.12103

    Article  Google Scholar 

  • Blunch, N.J.: Introduction to Structural Equation Modeling Using IBM SPSS Statistics and EQS. Sage, Thousand Oaks, CA (2016)

    Book  Google Scholar 

  • Browne, M.W.: Generalized least squares estimators in the analysis of covariance structures. S. Afr. Stat. J. 8, 1–24 (1974)

    Google Scholar 

  • Browne, M.W.: Asymptotically distribution-free methods for the analysis of covariance structures. Br. J. Math. Stat. Psychol. 37(1), 62–83 (1984). https://doi.org/10.1111/j.2044-8317.1984.tb00789.x

    Article  Google Scholar 

  • Bryant, F.B., Satorra, A.: Principles and practice of scaled difference chi square testing. Struct. Equ. Model. Multidiscip. J. 19(3), 372–398 (2012). https://doi.org/10.1080/10705511.2012.687671

    Article  Google Scholar 

  • Byrne, B.M.: Structural Equation Modeling with EQS: Basic Concepts, Applications, and Programming, 2nd edn. Lawrence Erlbaum Associates, London (2006)

    Google Scholar 

  • Byrne, B.M.: Structural EQUATION MODELING with AMOS: Basic concepts, Applications, and Programming, 3rd edn. Routledge, New York (2016)

    Book  Google Scholar 

  • Cassel, C.M., Hackl, P., Westlund, A.H.: On measurement of intangible assets: a study of robustness of partial least squares. Total Qual. Manag. 11(7), 897–907 (2000). https://doi.org/10.1080/09544120050135443

    Article  Google Scholar 

  • Chan, S.C.H., Mak, W.: The impact of servant leadership and subordinates’ organizational tenure on trust in leader and attitudes. Pers. Rev. 43(2), 272–287 (2014). https://doi.org/10.1108/pr-08-2011-0125

    Article  Google Scholar 

  • Chin, W.W.: The partial least squares approach to structural equation modeling. In: Marcoulides, G.A. (ed.) Modern Methods for Business Research, pp. 295–358. Lawrence Erlbaum, Mahwah, NJ (1998)

    Google Scholar 

  • Chou, C.-P., Bentler, P.M., Satorra, A.: Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: a Monte Carlo study. Br. J. Math. Stat. Psychol. 44(2), 347–357 (1991). https://doi.org/10.1111/j.2044-8317.1991.tb00966.x

    Article  Google Scholar 

  • Ciavolino, E., Carpita, M., Nitti, M.: High-order PLS path model with qualitative external information. Qual. Quant. 49(4), 1609–1620 (2015). https://doi.org/10.1007/s11135-014-0068-x

    Article  Google Scholar 

  • Creswell, J.W.: Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, 4th edn. Pearson Education Inc, Boston (2012)

    Google Scholar 

  • Curran, P.J., West, S.G., Finch, J.F.: The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychol. Methods 1(1), 16–29 (1996)

    Article  Google Scholar 

  • Dijkstra, T.K.: Some comments on maximum likelihood and partial least squares methods. J. Econom. 22(1), 67–90 (1983). https://doi.org/10.1016/0304-4076(83)90094-5

    Article  Google Scholar 

  • Dijkstra, T.K.: Consistent partial least squares estimators for linear and polynomial factor models: a report of a belated, serious and not even unsuccessful attempt. Unpublished manuscript (2011)

  • Dijkstra, T.K., Henseler, J.: Consistent and asymptotically normal PLS estimators for linear structural equations. Comput. Stat. Data Anal. 81, 10–23 (2015a)

    Article  Google Scholar 

  • Dijkstra, T.K., Henseler, J.: Consistent partial least squares path modeling. MIS Q. 39(2), 297–316 (2015b)

    Article  Google Scholar 

  • Eichhorn, B.R.: Common method variance techniques. Paper presented at the MWSUG 2014, Chicago, Illinois, October 5–7 (2014)

  • Evermann, J., Tate, M.: Assessing the predictive performance of structural equation model estimators. J. Bus. Res. 69(10), 4565–4582 (2016). https://doi.org/10.1016/j.jbusres.2016.03.050

    Article  Google Scholar 

  • Finney, S.J., DiStefano, C.: Non-normal and categorical data in structural equation modeling. In: Hancock, G.R., Mueller, R.O. (eds.) Structural Equation Modeling: A Second Course, pp. 269–314. Information Age Publishing, Greenwich, CT (2006)

    Google Scholar 

  • Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18(1), 39–50 (1981). https://doi.org/10.2307/3151312

    Article  Google Scholar 

  • Garson, G.D.: Hierarchical Linear Modeling: Guide and Applications. SAGE Publications, Thosand Oaks (2013)

    Google Scholar 

  • Ghasemy, M., Sufean, H., Ahmad Zabidi, A.R., Mohd Jamil, M., Ghavifekr, S.: Determining the key capacities of effective leaders in Malaysian public and private focused universities. SAGE Open 8(4), 1–12 (2018). https://doi.org/10.1177/2158244018807620

    Article  Google Scholar 

  • Ghasemy, M., Sufean, H., Megat Ahmad Kamaluddin, M.D.: The key determinants of leadership performance effectiveness in public research and comprehensive universities: An advanced PLS-SEM study in Malaysian context. Malays. Online J. Educ. Manag. 5(1), 62–81 (2017a). https://doi.org/10.22452/mojem.vol5no1.5

    Article  Google Scholar 

  • Ghasemy, M., Sufean, H., Megat Ahmad Kamaluddin, M.D., Ahmad Zabidi, A.R., Mohd Jamil, M.: Pivotal qualities for effective university leadership on the basis of a modified Australian model: the application of FIMIX-PLS and IPMA in the Malaysian academic context. Asia Pac. Educ. Rev. 18(4), 501–517 (2017b). https://doi.org/10.1007/s12564-017-9504-7

    Article  Google Scholar 

  • Goodhue, D.L., Lewis, W., Thompson, R.: Does PLS have advantages for small sample size or non-normal data? MIS Q. 36, 981–1001 (2012)

    Article  Google Scholar 

  • Grace, J.B., Bollen, K.A.: Representing general theoretical concepts in structural equation models: the role of composite variables. Environ. Ecol. Stat. 15(2), 191–213 (2008)

    Article  Google Scholar 

  • Gregor, S.: The nature of theory in information systems. MIS Q. 40, 611–642 (2006)

    Article  Google Scholar 

  • Hair, J.F., Babin, B.J., Anderson, R.E., Black, W.C.: Multivariate Data Analysis, 8th edn. Cengage, Mason, OH (2018)

    Google Scholar 

  • Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M.: A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd edn. Sage, Thousand Oaks, CA (2017a)

    Google Scholar 

  • Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M., Thiele, K.O.: Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. J. Acad. Mark. Sci. 45(5), 616–632 (2017b). https://doi.org/10.1007/s11747-017-0517-x

    Article  Google Scholar 

  • Hair, J.F., Risher, J.J., Sarstedt, M., Ringle, C.M.: When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 31(1), 2–24 (2019a). https://doi.org/10.1108/ebr-11-2018-0203

    Article  Google Scholar 

  • Hair, J.F., Sarstedt, M., Matthews, L.M., Ringle, C.M.: Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I—method. Eur. Bus. Rev. 28(1), 63–76 (2016). https://doi.org/10.1108/ebr-09-2015-0094

    Article  Google Scholar 

  • Hair, J.F., Sarstedt, M., Ringle, C.M.: Rethinking some of the rethinking of partial least squares. Eur. J. Mark. 53(4), 566–584 (2019b). https://doi.org/10.1108/ejm-10-2018-0665

    Article  Google Scholar 

  • Henseler, J., Ringle, C.M., Sarstedt, M.: Testing measurement invariance of composites using partial least squares. Int. Mark. Rev. 33(3), 405–431 (2016). https://doi.org/10.1108/imr-09-2014-0304

    Article  Google Scholar 

  • Huang, W.: PLSe: Efficient Estimators and Tests for Partial Least Square. UCLA, Los Angeles (2013)

    Google Scholar 

  • Hult, G.T.M., Hair, J.F., Proksch, D., Sarstedt, M., Pinkwart, A., Ringle, C.M.: Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. J. Int. Mark. 26(3), 1–21 (2018). https://doi.org/10.1509/jim.17.0151

    Article  Google Scholar 

  • Judge, T.A., Thoresen, C.J., Bono, J.E., Patton, G.K.: The job satisfaction–job performance relationship: a qualitative and quantitative review. Psychol. Bull. 127(3), 376–407 (2001). https://doi.org/10.1037//0033-2909.I27.3.376

    Article  Google Scholar 

  • Kline, R.B.: Principles and Practice of Structural Equation Modeling, 4th edn. Guilford Publications, New York, NY (2016)

    Google Scholar 

  • Liden, R.C., Wayne, S.J., Zhao, H., Henderson, D.: Servant leadership: development of a multidimensional measure and multi-level assessment. Leadersh. Q. 19(2), 161–177 (2008). https://doi.org/10.1016/j.leaqua.2008.01.006

    Article  Google Scholar 

  • Macdonald, S., Maclntyre, P.: The generic job satisfaction scale. Empl. Assist. Q. 13(2), 1–16 (1997)

    Article  Google Scholar 

  • Marcoulides, G.A., Chin, W.W., Saunders, C.: When imprecise statistical statements become problematic: a response to Goodhue, Lewis, and Thompson. MIS Q. 36(2), 717–728 (2012)

    Article  Google Scholar 

  • Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57(3), 519–530 (1970). https://doi.org/10.1093/biomet/57.3.519

    Article  Google Scholar 

  • Mardia, K.V.: Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā Indian J. Stat. Ser. B (1960–2002) 36(2), 115–128 (1974)

    Google Scholar 

  • Maruyama, G., McGarvey, B.: Evaluating causal models: an application of maximum-likelihood analysis of structural equations. Psychol. Bull. 87(3), 502–512 (1980). https://doi.org/10.1037/0033-2909.87.3.502

    Article  Google Scholar 

  • Matthews, L.M., Sarstedt, M., Hair, J.F., Ringle, C.M.: Identifying and treating unobserved heterogeneity with FIMIX-PLS: part II—a case study. Eur. Bus. Rev. 28(2), 208–224 (2016). https://doi.org/10.1108/ebr-09-2015-0095

    Article  Google Scholar 

  • Miller, J.S., Cardy, R.L.: Self-monitoring and performance appraisal: rating outcomes in project teams. J. Organ. Behav. 21(6), 609–626 (2000). https://doi.org/10.1002/1099-1379(200009)21:6%3c609:aid-job42%3e3.0.co;2-k

    Article  Google Scholar 

  • Neubert, M.J., Hunter, E.M., Tolentino, R.C.: A servant leader and their stakeholders: when does organizational structure enhance a leader’s influence? Leadersh. Q. 27(6), 896–910 (2016). https://doi.org/10.1016/j.leaqua.2016.05.005

    Article  Google Scholar 

  • Nitti, M., Ciavolino, E.: A deflated indicators approach for estimating second-order reflective models through PLS-PM: an empirical illustration. J. Appl. Stat. 41(10), 2222–2239 (2014). https://doi.org/10.1080/02664763.2014.909786

    Article  Google Scholar 

  • Northouse, P.G.: Leadership: Theory and Practice, 6th edn. Sage, Thousand Oaks, CA (2013)

    Google Scholar 

  • Rhemtulla, M., van Bork, R., Borsboom, D.: Worse than measurement error: Consequences of inappropriate latent variable measurement models. Psychol. Methods 25, 30–45 (2018)

    Article  Google Scholar 

  • Rigdon, E.E.: Choosing PLS path modeling as analytical method in European management research: a realist perspective. Eur. Manag. J. 34(6), 598–605 (2016). https://doi.org/10.1016/j.emj.2016.05.006

    Article  Google Scholar 

  • Rigdon, E.E., Becker, J.-M., Sarstedt, M.: Parceling can not reduce factor indeterminacy in factor analysis: a research note. Psychometrika 84(3), 772–780 (2019). https://doi.org/10.1007/s11336-019-09677-2

    Article  Google Scholar 

  • Ringle, C.M., Sarstedt, M.: Gain more insight from your PLS-SEM results: the importance-performance map analysis. Ind. Manag. Data Syst. 116(9), 1865–1886 (2016). https://doi.org/10.1108/imds-10-2015-0449

    Article  Google Scholar 

  • Ringle, C.M., Wende, S., Becker, J.-M.: SmartPLS (2015). http://www.smartpls.com

  • Rönkkö, M., Ylitalo, J.: Construct validity in partial least squares path modeling. In: International Conference on Information Systems (ICIS) (2010)

  • Sarstedt, M., Hair, J.F., Cheah, J.-H., Becker, J.-M., Ringle, C.M.: How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australas. Mark. J. (AMJ) 27(3), 197–211 (2019). https://doi.org/10.1016/j.ausmj.2019.05.003

    Article  Google Scholar 

  • Sarstedt, M., Hair, J.F., Nitzl, C., Ringle, C.M., Howard, M.C.: Beyond a tandem analysis of SEM and PROCESS: use of PLS-SEM for mediation analyses! Int. J. Mark. Res. 62(3), 288–299 (2020). https://doi.org/10.1177/1470785320915686

    Article  Google Scholar 

  • Sarstedt, M., Hair, J.F., Ringle, C.M., Thiele, K.O., Gudergan, S.P.: Estimation issues with PLS and CBSEM: where the bias lies! J. Bus. Res. 69(10), 3998–4010 (2016). https://doi.org/10.1016/j.jbusres.2016.06.007

    Article  Google Scholar 

  • Satorra, A., Bentler, P.M.: Scaling corrections for Chi square statistics in covariance structure analysis. In: Proceedings of the American Statistical Association, Business and Economic Statistics Section, Washington, DC, pp. 308–313. American Statistical Association (1988)

  • Satorra, A., Bentler, P.M.: Corrections to test statistics and standard errors in covariance structure analysis. In: Eye, A.V., Clogg, C.C. (eds.) Latent Variable Analysis: Application for Development Research, pp. 399–419. Sage, Thousand Oaks, CA (1994)

    Google Scholar 

  • Satorra, A., Bentler, P.M.: A scaled difference Chi square test statistic for moment structure analysis. Psychometrika 66(4), 507–514 (2001). https://doi.org/10.1007/bf02296192

    Article  Google Scholar 

  • Satorra, A., Bentler, P.M.: Ensuring positiveness of the scaled difference Chi square test statistic. Psychometrika 75(2), 243–248 (2010). https://doi.org/10.1007/s11336-009-9135-y

    Article  Google Scholar 

  • Schermerhorn, J.R., Hunt, J.G., Osborn, R.N., Uhl-Bien, M.: Organizational Behavior, 11th edn. Wiley, Hoboken, NJ (2010)

    Google Scholar 

  • Schneider, S.K., George, W.M.: Servant leadership versus transformational leadership in voluntary service organizations. Leadersh. Organ. Dev. J. 32(1), 60–77 (2011). https://doi.org/10.1108/01437731111099283

    Article  Google Scholar 

  • Schuberth, F., Henseler, J., Dijkstra, T.K.: Confirmatory composite analysis. Front. Psychol. 9, 1–14 (2018). https://doi.org/10.3389/fpsyg.2018.02541

    Article  Google Scholar 

  • Shmueli, G., Sarstedt, M., Hair, J.F., Cheah, J.-H., Hiram, T., Vaithilingam, S., Ringle, C.M.: Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. Eur. J. Mark. 53(11), 2322–2347 (2019). https://doi.org/10.1108/ejm-02-2019-0189

    Article  Google Scholar 

  • Treiblmaier, H., Bentler, P.M., Mair, P.: Formative constructs implemented via common factors. Struct. Equ. Model. 18(1), 1–17 (2011)

    Article  Google Scholar 

  • Vinzi, V.E., Trinchera, L., Amato, S.: PLS Path Modeling: From Foundations to Recent Developments and Open Issues for Model Assessment and Improvement. In: Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H. (eds.) Handbook of Partial Least Squares: Concepts, Methods and Applications, pp. 47–82. Springer, Berlin (2010)

    Chapter  Google Scholar 

  • Wold, H.: Soft modeling: the basic design and some extensions. In: Joreskog, K.G., Wold, H. (eds.) Systems under indirect observation: causality, structure, prediction, vol. 2, pp. 1–54. North-Holland, Amsterdam (1982)

    Google Scholar 

  • Yuan, K.-H., Bentler, P.M.: Mean and covariance structure analysis: theoretical and practical improvements. J. Am. Stat. Assoc. 92(438), 767–774 (1997). https://doi.org/10.1080/01621459.1997.10474029

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the support of our families to finish this manuscript during unprecedented global crises and workplace upheaval. We also are indebted to the editor and review team for their efforts and contributions during this time. Similarly, we appreciate the responsive support of the technical team at Multivariate Software Inc. (www.mvsoft.com). A part of this project was presented at International Symposium on Applied Structural Equation Modeling and Methodological Matters (SASEM) 2019, Melaka, Malaysia.

Funding

This research study was supported by the Universiti Sains Malaysia (Grant Number: 304/CIPPTN/6315200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghasemy.

Ethics declarations

Conflict interest

No conflict of interested declared by the authors with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The univariate skewness and kurtosis statistics of the items of the simulated 2-factor CFA model under the non-normality condition.

Item

Skewness

Kurtosis

λ1,1

− 1.75

4.00

λ2,1

1.50

2.50

λ3,1

− 1.50

4.35

λ4,2

1.00

2.50

λ5,2

− 0.90

3.00

λ6,2

1.50

2.50

Appendix B

The univariate skewness and kurtosis statistics of the items of the simulated non-recursive model under the non-normality condition.

Item

Skewness

Kurtosis

λ1,1

− 1.50

3.00

λ2,1

1.50

2.50

λ3,1

− 1.00

3.35

λ4,2

1.00

2.50

λ5,2

− 0.60

2.70

λ6,3

1.50

2.50

λ7,3

− 1.20

2.70

λ8,3

− 1.00

1.65

λ9,4

− 0.10

2.35

λ10,4

0.30

2.60

λ11,5

− 0.70

3.30

λ12,5

− 0.60

3.20

λ13,5

1.50

3.80

Appendix C

The *.eqs file to verify the performance of ML under the non-normality condition (N = 3000, Replication = 1000).

figure a

Appendix D

The *.eqs file to verify the performance of PLSe2 under the non-normality condition (N = 3000, Replication = 1000).

figure b

Appendix E

The items of the final model of the empirical example

Construct

Code

Item

Creating value for the community

CVC1

I emphasize the importance of giving back to the community

CVC2

I am always interested in helping people in the community

CVC3

I am involved in community activities

CVC4

I encourage others to volunteer in the community

Job performance

JP6

When I want to reach a goal, I am usually able to succeed

JP7

I complete work in a timely and effective manner

JP8

I complete a large quantity of work

JP9

I perform high-quality work

Job satisfaction

JS2

I feel close to the people at work

JS3

I feel good about working at this institution

JS4

I feel secure about my job

JS5

I believe management is concerned about me

JS9

I get along with my supervisors

JS10

I feel good about my job

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemy, M., Jamil, H. & Gaskin, J.E. Have your cake and eat it too: PLSe2 = ML + PLS. Qual Quant 55, 497–541 (2021). https://doi.org/10.1007/s11135-020-01013-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11135-020-01013-6

Keywords

Navigation