Skip to main content
Log in

Phenolic Composition and α-Glucosidase Inhibition of Leaves from Chilean Bean Landraces

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The MeOH:H2O (7:3) extracts of leaves from Chilean bean landraces were assessed for total phenolic (TP), total flavonoid (TF), total proanthocyanidin (TPA) content, antioxidant capacity (ORAC, FRAP, TEAC, CUPRAC, DPPH) and the inhibition of enzymes associated with metabolic syndrome (α-glucosidase, α-amylase, pancreatic lipase). The chemical profiles were analyzed by HPLC-DAD. Higher antioxidant activity in the ORAC and CUPRAC assay was found for the landrace Coscorrón, and the best effect in the TEAC for Sapito, respectively. The main phenolics were flavonol glycosides and caffeic acid derivatives. The extracts presented strong activity against α-glucosidase, but were inactive towards α-amylase and pancreatic lipase. The leaf extract from the Sapito landrace was fractionated to isolate the main α-glucosidase inhibitors, leading to caffeoylmalic acid with an IC50 of 0.21 μg/mL. The HPLC fingerprints of the leaves differentiate three groups of chemical profiles, according to the main phenolic content. A significant correlation was found between the α-glucosidase inhibition, the content of caffeoylmalic acid (r = −0.979) and kaempferol 3-O-β-D-glucoside (r = 0.942) in the extracts. The presence of α-glucosidase inhibitors in the leaves of Chilean beans support their potential as a source of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article and its supplementary information files.

Abbreviations

CE:

Catechin equivalents

CUPRAC:

Cupric reducing antioxidant capacity

DPPH:

2,2-diphenyl-1-picrylhydrazyl radical

FRAP:

Ferric reducing antioxidant power

GAE:

Gallic acid equivalents

HPLC:

High performance liquid chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

NPR:

Natural products reagent, diphenylboric acid-β-ethylamino ester

ORAC:

Oxygen radical antioxidant capacity

Rt :

Retention time in minutes

SC50 :

Extract concentration scavenging 50% of the DPPH radical

sh:

Shoulder

TE:

Trolox equivalents

TEAC:

Trolox equivalents antioxidant capacity

TF:

Total flavonoid content

TLC:

Thin layer chromatography

TP:

Total phenolic content

TPA:

Total proanthocyanidins

UV:

Ultraviolet

References

  1. Shamseldin A, Velázquez E (2020) The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with Rhizobia: a review. World J Microbiol Biotechnol 36:63. https://doi.org/10.1007/s11274-020-02839-w

    Article  PubMed  Google Scholar 

  2. Gentry HS (1969) Origin of the common beam, Phaseolus vulgaris. Economic Bot 23:55–69. https://www.jstor.org/stable/4253014. Accessed 4 Jan 2022

    Article  Google Scholar 

  3. Paredes CM, Becerra VV, Tay UJ, Blair MW, Bascur BG (2010) Selection of a representative core collection from the Chilean common bean germplasm. Chilean J Agric Res 70:3–15. https://doi.org/10.4067/S0718-58392010000100001

    Article  Google Scholar 

  4. Bai Y, Xu Y, Wang B, Li S, Guo F, Hua H, Zhao Y, Yu Z (2017) Comparison of phenolic compounds, antioxidant and antidiabetic activities between selected edible beans and their different growth periods leaves. J Funct Foods 35:694–702. https://doi.org/10.1016/j.jff.2017.06.036

    Article  CAS  Google Scholar 

  5. Ghaly AE, Alkoaik FN (2010) Extraction of protein from common plant leaves for use as human food. Am J Appl Sci 7:331–342. https://doi.org/10.3844/ajassp.2010.331.342

    Article  CAS  Google Scholar 

  6. Ha PTT, Tran NTB, Tram NTN, Kha VH (2020) Total phenolic, total flavonoid contents and antioxidant potential of common bean (Phaseolus vulgaris L.) in Vietnam. AIMS Agric Food 5:635–648. https://doi.org/10.3934/agrfood.2020.4.635

    Article  Google Scholar 

  7. Yang Q-Q, Gan R-Y, Ge Y-Y, Zhang D, Corke H (2018) Polyphenols in common beans (Phaseolus vulgaris L.): chemistry, analysis, and factors affecting composition. Compr Rev Food Sci Food Saf 17:1518–1539. https://doi.org/10.1111/1541-4337.12391

    Article  CAS  PubMed  Google Scholar 

  8. Thompson HJ (2019) Dietary bean consumption and human health. Nutrients 17:3074. https://doi.org/10.3390/nu11123074

    Article  Google Scholar 

  9. Moreno-Valdespino CA, Luna-Vital D, Camacho-Ruiz RM, Mojica L (2020) Bioactive proteins and phytochemicals from legumes mechanism of action preventing obesity and type-2 diabetes. Food Res Int 130:108905. https://doi.org/10.1016/j.foodres.2019.108905

    Article  CAS  Google Scholar 

  10. Becerra-Tomás N, Papandreou C, Salas-Salvadó J (2019) Legume consumptions and cardiometabolic health. J Adv Nutr 10(Suppl_4):S437–S450. https://doi.org/10.1093/advances/nmz003

    Article  Google Scholar 

  11. Aparicio-Fernández X, García-Gasca T, Yousef GG, Lila MA, González de Mejia E, Loarca-Pina G (2006) Chemopreventive activity of polyphenolics from black Jamapa bean (Phaseolus vulgaris L.) on HeLa and HaCaT cells. J Agric Food Chem 54:2116–2122. https://doi.org/10.1021/jf052974m

    Article  CAS  PubMed  Google Scholar 

  12. Frassinetti S, Gabriele M, Caltavuturo L, Longo V, Pucci L (2015) Antimutagenic and antioxidant activity of a selected lectin-free common bean (Phaseolus vulgaris L.) in two cell-based models. Plant Foods Hum Nutr 70:35–41. https://doi.org/10.1007/s11130-014-0453-6

    Article  CAS  PubMed  Google Scholar 

  13. García-Lafuente A, Moro C, Manchón N, Gonzalo-Ruiz A, Villares A, Guillamón E, Rostagno M, Mateo-Vivaracho L (2014) In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chem 161:216–223. https://doi.org/10.1016/j.foodchem.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  14. Gan R-Y, Deng Z-Q, Yan A-X, Shah NP, Lui W-Y, Chan C-L, Corke H (2016) Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT-Food Sci Technol 73:168–177. https://doi.org/10.1016/j.lwt.2016.06.012

    Article  CAS  Google Scholar 

  15. Damián-Medina K, Salinas-Moreno Y, Milenkovic D, Figueroa-Yáñez L, Marino-Marmolejo E, Higuera-Ciapara I, Vallejo-Cardona A, Lugo-Cervantes E (2020) In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon 6:e03632. https://doi.org/10.1016/j.heliyon.2020.e03632

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ramírez-Venegas G, De Ita-Pérez D, Díaz-Muñoz M, Méndez I, García-Gasca T, Ahumada-Solórzano M, Zambrano-Estrada X, Vázquez-Martínez O, Guzmán-Maldonado H, Luna-Moreno D (2021) Supplementation with Phaseolus vulgaris leaves improves metabolic alterations induced by high-fat/fructose diet in rats under time-restricted feeding. Plant Foods Hum Nutr 76:297–303. https://doi.org/10.1007/s11130-021-00904-9

    Article  CAS  PubMed  Google Scholar 

  17. Manousi N, Sarakatsianos I, Samanidou V (2019) 10 - Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. Grumezescu AM, Holban AM (eds) In: Engineering tools in the beverage industry. Woodhead Publishing, pp. 283–314. https://doi.org/10.1016/B978-0-12-815258-4.00010-X

  18. Reyes-Martínez A, Almaraz-Abarca N, Gallardo-Velázquez T, González-Elizondo M del S, Herrera-Arrieta Y, Pajarito-Ravelero A, Alanís-Bañuelos RE, Torres-Morán MI (2014) Evaluation of foliar phenols of 25 Mexican varieties of common bean (Phaseolus vulgaris L.) as antioxidants and varietal markers. Nat Prod Res 28:2158–2162. https://doi.org/10.1080/14786419.2014.930855

  19. Dinelli G, Bonetti A, Minelli M, Marotte I, Catizone P, Mazzanti A (2006) Content of flavonols in Italian bean (Phaseolus vulgaris L.) ecotypes. Food Chem 99:105–114. https://doi.org/10.1016/j.foodchem.2005.07.028

    Article  CAS  Google Scholar 

  20. Šibul F, Orčić D, Vasić M, Anačkov G, Nađpal J, Savić A, Mimica-Dukić N (2016) Phenolic profile, antioxidant and anti-inflammatory potential of herb and root extracts of seven selected legumes. Ind Crop Prod 83:641–653. https://doi.org/10.1016/j.indcrop.2015.12.057

    Article  CAS  Google Scholar 

  21. Söhretoglu D, Sari S (2020) Flavonoids as alpha-glucosidase inhibitors: mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochem Rev 19:1081–1092. https://doi.org/10.1007/s11101-019-09610-6

    Article  CAS  Google Scholar 

  22. Tadera K, Minami Y, Takamatsu K, Matsuoka T (2006) Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol 52:149–153. https://doi.org/10.3177/jnsv.52.149

    Article  CAS  PubMed  Google Scholar 

  23. Lim J, Ferruzzi MG, Hamaker BR (2022) Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase. Food Chem 370:130981. https://doi.org/10.1016/j.foodchem.2021.130981

    Article  CAS  PubMed  Google Scholar 

  24. Yoshihara T, Yoshikawa H, Kunimatsu S, Sakamura S, Sakuma T (1977) New amino acid derivatives conjugated with caffeic acid and DOPA from red clover (Trifolium pretense). Agric Biol Chem 41:1679–1684. https://doi.org/10.1080/00021369.1977.10862719

    Article  CAS  Google Scholar 

  25. Szajwaj B, Moldoch J, Masullo M, Piacente S, Oleszek W, Stochmal A (2011) Amides and esters of phenylpropenoic acids from the aerial parts of Trifolium pallidum. Nat Prod Comm 6(9):1293–1296. https://doi.org/10.1177/1934578X1100600921

    Article  CAS  Google Scholar 

  26. Grauso L, de Falco B, Lanzotti V, Motti R (2020) Stinging nettle, Urtica dioica L.: botanical, phytochemical and pharmacological overview. Phytochem Rev 19:1341–1377. https://doi.org/10.1007/s11101-020-09680-x

    Article  CAS  Google Scholar 

  27. Sullivan ML, Green HA, Verdonk JC (2020) Engineering alfalfa to produce 2-O-caffeoyl-L-malate (phaselic acid) for preventing post-harvest protein loss via oxidation by polyphenol oxidase. Front Plant Sci 11:610399. https://doi.org/10.3389/fpls.2020.610399

    Article  PubMed  Google Scholar 

  28. Sullivan ML, Zeller WE (2013) Efficacy of various naturally occurring caffeic acid derivatives in preventing post-harvest protein losses in forages. J Sci Food Agric 93:219–226. https://doi.org/10.1002/jsfa.5781

    Article  CAS  PubMed  Google Scholar 

  29. Chen PX, Tang Y, Marcone MF, Pauls PK, Zhang B, Liu R, Tsao R (2015) Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chem 185:298–308. https://doi.org/10.1016/j.foodchem.2015.03.100

    Article  CAS  PubMed  Google Scholar 

  30. Pitura K, Arntfield SD (2019) Characteristics of flavonol glycosides in bean (Phaseolus vulgaris L.) seed coats. Food Chem 272:26–32. https://doi.org/10.1016/j.foodchem.2018.07.220

    Article  CAS  PubMed  Google Scholar 

  31. Guajardo-Flores D, Serna-Saldívar SO, Gutiérrez-Uribe JA (2013) Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem 141:1497–1503. https://doi.org/10.1016/j.foodchem.2013.04.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

N.N. thanks CONICYT for a doctoral grant Folio 21192237. This research received funding from FONDECYT 1210076 and Proyecto Fortalecimiento al Desarrollo Científico de Centros Regionales-ANID R20F0001CEAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Schmeda-Hirschmann.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcón-Espósito, J., Nina, N., Theoduloz, C. et al. Phenolic Composition and α-Glucosidase Inhibition of Leaves from Chilean Bean Landraces. Plant Foods Hum Nutr 77, 135–140 (2022). https://doi.org/10.1007/s11130-022-00955-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-00955-6

Keywords

Navigation