Skip to main content
Log in

Loss of Sensory Cup Quality: Physiological and Chemical Changes during Green Coffee Storage

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Coffee is one of the most valued consumer products. Surprisingly, there is limited scientific knowledge about the biochemical processes during the storage of green coffee that affects its sensory quality. This review analyzes the impact of the different variables involved in the green coffee storage on quality from a chemical point of view. Further, it highlights the relationship between the physiological processes of the grain, its viability, and shelf-life. Notably, the storage conditions and postharvest treatment affect both the longevity and the sensory quality of the coffee, probably due to the biological behavior of green coffee. Various studies found modifications in their chemical profiles involving carbohydrates, lipids, proteins/amino acids, and phenolic compounds. To make future studies more comparable, we recommend standardized protocols for evaluating and linking the sensory coffee quality with instrumental analysis methods and pre-defined settings for experimental storage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morland L (2018) Values added in specialty coffee. Int J Entrepreneurship 19:113–124

    Google Scholar 

  2. Hernandez-Aguilera JN, Gómez MI, Rodewald AD, Rueda X, Anunu C, Bennett R, van Es HM (2018) Quality as a driver of sustainable agricultural value chains: the case of the relationship coffee model. Bus Strategy Environ 27:179–198

    Article  Google Scholar 

  3. Barbosa IP, de Oliveira ACB, Rosado RDS, Sakiyama NS, Cruz CD, Pereira AA (2020) Sensory analysis of arabica coffee: cultivars of rust resistance with potential for the specialty coffee market. Euphytica 216:165

    Article  Google Scholar 

  4. Monakhova YB, Ruge W, Kuballa T, Ilse M, Winkelmann O, Diehl B, Thomas F, Lachenmeier DW (2015) Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy. Food Chem 182:178–184

    Article  CAS  PubMed  Google Scholar 

  5. Kwon DJ, Jeong HJ, Moon H, Kim HN, Cho JH, Lee JE, Hong KS, Hong YS (2015) Assessment of green coffee bean metabolites dependent on coffee quality using a 1H NMR-based metabolomics approach. Food Res Int 67:175–182

    Article  CAS  Google Scholar 

  6. Cheng B, Furtado A, Smyth HE, Henry RJ (2016) Influence of genotype and environment on coffee quality. Trends Food Sci Technol 57:20–30

    Article  CAS  Google Scholar 

  7. do Livramento KG, Borém FM, José AC, Santos AV, do Livramento DE, Alves JD, Paiva LV (2017) Proteomic analysis of coffee grains exposed to different drying process. Food Chem 221:1874–1882

    Article  PubMed  CAS  Google Scholar 

  8. Scheidig C, Czerny M, Schieberle P (2007) Changes in key odorants of raw coffee beans during storage under defined conditions. J Agric Food Chem 55:5768–5775

    Article  CAS  PubMed  Google Scholar 

  9. Tripetch P, Borompichaichartkul C (2019) Effect of packaging materials and storage time on changes of colour, phenolic content, chlorogenic acid and antioxidant activity in arabica green coffee beans (Coffea arabica L. cv. Catimor). J Stored Prod Res 84:101510

  10. Broissin-Vargas L, Snell-Castro R, Godon J, González-Ríos O, Suárez-Quiroz M (2018) Impact of storage conditions on fungal community composition of green coffee beans Coffea arabica L. stored in jute sacks during 1 year. J Appl Microbiol 124:547–558

  11. Makri E, Tsimogiannis D, Dermesonluoglu EK, Taoukisa PS (2011) Modeling of Greek coffee aroma loss during storage at different temperatures and water activities. Procedia Food Sci 1:1111–1117

    Article  CAS  Google Scholar 

  12. Borém FM, Ribeiro FC, Figueiredo LP, Giomo GS, Fortunato VA, Isquierdo EP (2013) Evaluation of the sensory and color quality of coffee beans stored in hermetic packaging. J Stored Prod Res 52:1–6

    Article  Google Scholar 

  13. Patui S, Clincon L, Peresson C, Zancani M, Conte L, Del Terra L, Navarini L, Vianello A, Braidot E (2014) Lipase activity and antioxidant capacity in coffee (Coffea arabica L.) seeds during germination. Plant Sci 219-220:19–25

  14. Ribeiro FC, Borém FM, Giomo GS, De Lima RR, Malta MR, Figueiredo LP (2011) Storage of green coffee in hermetic packaging injected with CO2. J Stored Prod Res 47:341–348

    Article  Google Scholar 

  15. Casas MI, Vaughan MJ, Bonello P, McSpadden Gardener B, Grotewold E, Alonso AP (2017) Identification of biochemical features of defective Coffea arabica L. beans. Food Res Int 95:59–67

  16. Specialty Coffee Association (2019) Protocols & best practices, Retrieved January 14, 2022 from "https://sca.coffee/research/protocols-best-practices/"

  17. Mori E, Bragagnolo N, Morgano M, Anjos V, Yotsuyanagi K, Faria E, Iyomasa J (2003) Brazil coffee growing regions and quality of natural, pulped natural and washed coffees. Food Food Ingred J Japan 208:416–423. Retrieved January 26, 2022 from "https://www.asic-cafe.org/conference/19th-international-scientific-colloquium-coffee/brazil-coffee-growing-regions-and"

  18. Sunarharum WB, Williams DJ, Smyth HE (2014) Complexity of coffee flavor: a compositional and sensory perspective. Food Res Int 62:315–325

    Article  CAS  Google Scholar 

  19. Mazzafera P (1999) Chemical composition of defective coffee beans. Food Chem 64:547–554

    Article  CAS  Google Scholar 

  20. Iwasa K, Setoyama D, Shimizu H, Seta H, Fujimura Y, Miura D, Wariishi H, Nagai C, Nakahara K (2015) Identification of 3-methylbutanoyl glycosides in green Coffea arabica beans as causative determinants for the quality of coffee flavors. J Agric Food Chem 63:3742–3751

  21. Tolessa K, Rademaker M, De Baets B, Boeckx P (2016) Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans. Talanta 150:367–374

    Article  CAS  PubMed  Google Scholar 

  22. Bucheli P, Meyer I, Pittet A, Vuataz G, Viani R (1998) Industrial storage of green Robusta coffee under tropical conditions and its impact on raw material quality and ochratoxin a content. J Agric Food Chem 46:4507–4511

    Article  CAS  Google Scholar 

  23. Viegas C, Pacífico C, Faria T, de Oliveira AC, Caetano LA, Carolino E, Gomes AQ, Viegas S (2017) Fungal contamination in green coffee beans samples: a public health concern. J Toxicol Environ Health Part A 80:719–728

    Article  CAS  Google Scholar 

  24. Rendón MY, De Jesus Garcia Salva T, Bragagnolo N (2014) Impact of chemical changes on the sensory characteristics of coffee beans during storage. Food Chem 147:279–286

  25. Dussert S, Davey MW, Laffargue A, Doulbeau S, Swennen R, Etienne H (2006) Oxidative stress, phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds. Physiol Plant 127:192–204

    Article  CAS  Google Scholar 

  26. Selmar D, Bytof G, Knopp SE (2008) The storage of green coffee (Coffea arabica): decrease of viability and changes of potential aroma precursors. Ann Bot 101:31–38

    Article  CAS  PubMed  Google Scholar 

  27. Donovan NK, Foster KA, Parra Salinas CA (2019) Analysis of green coffee quality using hermetic bag storage. J Stored Prod Res 80:1–9

    Article  Google Scholar 

  28. Cong S, Dong W, Zhao J, Hu R, Long Y, Chi X (2020) Characterization of the lipid oxidation process of Robusta green coffee beans and shelf life prediction during accelerated storage. Molecules 25:1157

    Article  CAS  PubMed Central  Google Scholar 

  29. Murkovic M, Derler K (2006) Analysis of amino acids and carbohydrates in green coffee. J Biochem Biophys Methods 69:25–32

    Article  CAS  PubMed  Google Scholar 

  30. Waters DM, Arendt EK, Moroni AV (2017) Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality. Crit Rev Food Sci Nutr 57:259–274

    Article  CAS  PubMed  Google Scholar 

  31. Nikolova-Damyanova B, Velikova R, Jham GN (1998) Lipid classes, fatty acid composition and triacylglycerol molecular species in crude coffee beans harvested in Brazil. Food Res Int 31:479–486

    Article  CAS  Google Scholar 

  32. Speer K, Kölling-Speer I (2006) The lipid fraction of the coffee bean. Braz J Plant Phys 18:201–216

    Article  CAS  Google Scholar 

  33. Shibamoto T (2015) Volatile chemicals from thermal degradation of less volatile coffee components. In: Preedy V (ed) Coffee in health and disease prevention, 1st edn. Academic Press, San Diego, pp 129–135

    Chapter  Google Scholar 

  34. D’Amelio N, De Angelis E, Navarini L, Schievano E, Mammi S (2013) Green coffee oil analysis by high-resolution nuclear magnetic resonance spectroscopy. Talanta 110:118–127

    Article  PubMed  CAS  Google Scholar 

  35. Joët T, Laffargue A, Descroix F, Doulbeau S, Bertrand B, de Kochko A, Dussert S (2010) Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem 118:693–701

    Article  CAS  Google Scholar 

  36. Ali M, Homann T, Kreisel J, Khalil M, Puhlmann R, Kruse HP, Rawel H (2012) Characterization and modeling of the interactions between coffee storage proteins and phenolic compounds. J Agric Food Chem 60:11601–11608

    Article  CAS  PubMed  Google Scholar 

  37. Nunes FM, Cruz ACS, Coimbra MA (2012) Insight into the mechanism of coffee melanoidin formation using modified “in bean” models. J Agric Food Chem 60:8710–8719

    Article  CAS  PubMed  Google Scholar 

  38. Nunes FM, Coimbra MA (2010) Role of hydroxycinnamates in coffee melanoidin formation. Phytochem Rev 9:171–185

    Article  CAS  Google Scholar 

  39. Mestdagh F, Davidek T, Chaumonteuil M, Folmer B, Blank I (2014) The kinetics of coffee aroma extraction. Food Res Int 63:271–274

    Article  CAS  Google Scholar 

  40. Poisson L, Schmalzried F, Davidek T, Blank I, Kerler J (2009) Study on the role of precursors in coffee flavor formation using in-bean experiments. J Agric Food Chem 57:9923–9931

    Article  CAS  PubMed  Google Scholar 

  41. Moreira ASP, Coimbra MA, Nunes FM, Simões J, Domingues MRM (2011) Evaluation of the effect of roasting on the structure of coffee galactomannans using model oligosaccharides. J Agric Food Chem 59:10078–10087

    Article  CAS  PubMed  Google Scholar 

  42. Buffo RA, Cardelli-Freire C (2004) Coffee flavour: an overview. Flavour Fragr J 19:99–104. https://doi.org/10.1002/ffj.1325

    Article  CAS  Google Scholar 

  43. Dulsat-Serra N, Quintanilla-Casas B, Vichi S (2016) Volatile thiols in coffee: a review on their formation, degradation, assessment and influence on coffee sensory quality. Food Res Int 89:982–988

    Article  CAS  Google Scholar 

  44. Kleinwächter M, Selmar D (2010) Influence of drying on the content of sugars in wet processed green Arabica coffees. Food Chem 119:500–504

    Article  CAS  Google Scholar 

  45. Eira MT, Amaral Da Silva EA, De Castro RD, Dussert S, Walters C, Bewley JD, Hilhorst HW (2006) Coffee seed physiology. Braz J Plant Physiol 18:149–163

    Article  CAS  Google Scholar 

  46. Montavon P, Duruz E, Rumo G, Pratz G (2003) Evolution of green coffee protein profiles with maturation and relationship to coffee cup quality. J Agric Food Chem 51:2328–2334

    Article  CAS  PubMed  Google Scholar 

  47. Dussert S, Couturon E, Engelmann F, Joët T (2012) Biologie de la conservation des semences de caféiers: aspects fondamentaux et conséquences pratiques. Une revue Cahiers Agricultures 21:106–114. https://doi.org/10.1684/agr.2012.0552

  48. Roberts EH (1973) Predicting the storage life of seeds. Seed Science and Technology 1:499–514. Retrieved January 26, 2022 from "https://agris.fao.org/agris-search/search.do?recordID=US201303117261"

  49. Ellis R, Hong T, Roberts E (1990) An intermediate category of seed storage behaviour? I Coffee J Exp Bot 41:1167–1174

    Article  Google Scholar 

  50. Dussert S, Chabrillange N, Engelmann F, Hamonl S (1999) Quantitative estimation of seed desiccation sensitivity using a quantal respose model: applicaion to nine species of the genus Coffea L. Seed Sci Res 9:135–144

    Article  Google Scholar 

  51. Fantazzini TB, da Rosa DVF, Pereira CC, Pereira DS, Cirillo MÂ, Ossani PC (2018) Association between the artificial aging test and the natural storage of coffee seeds. J Seed Sci 40:164–172

    Article  Google Scholar 

  52. Knopp S, Bytof G, Selmar D (2006) Influence of processing on the content of sugars in green Arabica coffee beans. Eur Food Res Technol 223:195–201

    Article  CAS  Google Scholar 

  53. Selmar D, Bytof G, Knopp SE, Breitenstein B (2006) Germination of coffee seeds and its significance for coffee quality. Plant Biol 8:260–264

    Article  CAS  PubMed  Google Scholar 

  54. Selmar D, Kleinwächter M, Bytof G (2014) Metabolic responses of coffee beans during processing and their impact on coffee flavor. In: Schwan R, Fleet G (eds) Cocoa and coffee fermentations, 1st edn. Taylor & Francis, Boca Raton, pp 431–476

    Google Scholar 

  55. Bytof G, Knopp SE, Schieberle P, Teutsch I, Selmar D (2005) Influence of processing on the generation of gamma-aminobutyric acid in green coffee beans. Eur Food Res Technol 220:245–250

    Article  CAS  Google Scholar 

  56. Kramer D, Breitenstein B, Kleinwchter M, Selmar D (2010) Stress metabolism in green coffee beans (Coffea arabica L.): expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol 51:546–553

    Article  CAS  PubMed  Google Scholar 

  57. Feria-Morales AM (2002) Examining the case of green coffee to illustrate the limitations of grading systems/expert tasters in sensory evaluation for quality control. Food Qual Prefer 13:355–367

    Article  Google Scholar 

  58. Toci AT, Farah A (2008) Volatile compounds as potential defective coffee beans’ markers. Food Chem 108:1133–1141

    Article  CAS  PubMed  Google Scholar 

  59. Wang N, Fu Y, Lt L (2011) Feasibility study on chemometric discrimination of roasted Arabica coffees by solvent extraction and Fourier transform infrared spectroscopy. J Agric Food Chem 59:3220–3226

    Article  CAS  PubMed  Google Scholar 

  60. Pazmiño-Arteaga JD, Chagolla A, Gallardo-Cabrera C, Ruiz-Márquez AF, González-Rodríguez AT, Camargo-Escalante MO, Tiessen A, Winkler R (2019) Screening for green coffee with sensorial defects due to aging during storage by MALDI-ToF mass fingerprinting. Food Anal Methods 12:1571–1576

    Article  Google Scholar 

  61. Bertone E, Venturello A, Giraudo A, Pellegrino G, Geobaldo F (2016) Simultaneous determination by NIR spectroscopy of the roasting degree and Arabica/Robusta ratio in roasted and ground coffee. Food Control 59:683–689

    Article  CAS  Google Scholar 

  62. Santos JR, Lopo M, Rangel AO, Lopes JA (2016) Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting. Food Control 60:408–415

    Article  CAS  Google Scholar 

  63. Consonni R, Cagliani LR, Cogliati C (2012) NMR based geographical characterization of roasted coffee. Talanta 88:420–426

    Article  CAS  PubMed  Google Scholar 

  64. Wei F, Furihata K, Miyakawa T, Tanokura M (2014) A pilot study of NMR-based sensory prediction of roasted coffee bean extracts. Food Chem 152:363–369

    Article  CAS  PubMed  Google Scholar 

  65. Arana V, Medina J, Alarcon R, Moreno E, Heintz L, Schäfer H, Wist J (2015) Coffee’s country of origin determined by NMR: the Colombian case. Food Chem 175:500–506

    Article  CAS  PubMed  Google Scholar 

  66. Defernez M, Wren E, Watson AD, Gunning Y, Colquhoun IJ, Le Gall G, Williamson D, Kemsley EK (2017) Low-field 1H NMR spectroscopy for distinguishing between Arabica and Robusta ground roast coffees. Food Chem 216:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sandusky PO (2017) Introducing undergraduate students to metabolomics using a NMR-based analysis of coffee beans. J Chem Educ 94:1324–1328

    Article  CAS  Google Scholar 

  68. Gamboa-Becerra R, Hernández-Hernández MC, González-Ríos O, Suárez-Quiroz ML, Gálvez-Ponce E, Ordaz-Ortiz JJ, Winkler R (2019) Metabolomic markers for the early selection of Coffea canephora plants with desirable cup quality traits. Metabolites 9:1–19

    Article  CAS  Google Scholar 

  69. Schripsema J (2010) Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochem Anal 21:14–21

    Article  CAS  PubMed  Google Scholar 

  70. Hoyos-Ossa DE, Gil-Solsona R, Peñuela GA, Sancho JV, Hernández FJ (2018) Assessment of protected designation of origin for Colombian coffees based on HRMS-based metabolomics. Food Chem 250:89–97

    Article  CAS  PubMed  Google Scholar 

  71. Winkler R (ed) (2020) Processing metabolomics and proteomics data with open software: a practical guide. No. 8 in new developments in mass spectrometry, 1St edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  72. Gamboa-Becerra R, Montero-Vargas JM, Martínez-Jarquín S, Gálvez-Ponce E, Moreno-Pedraza A, Winkler R (2017) Rapid classification of coffee products by data mining models from direct electrospray and plasma-based mass spectrometry analyses. Food Anal Methods 10:1359–1368

    Article  Google Scholar 

  73. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) (1996) ICH Q1A (R2) Stability testing of new drug substances and products. ICH Guidelines Step 4, Retrieved January 14, 2022 from "https://ich.org"

Download references

Acknowledgments

We thank Byron Pazmiño Arteaga for creating the illustration of the coffee fruit anatomy. The work was supported by the grants MINCIENCIAS to J.P.A and CONACyT-DFG 2016/277850 to R.W. C.G. received a National Ph.D. scholarship (727-2016) and T.G.R. a CONACyT Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Winkler.

Ethics declarations

This article does not contain any studies with human or animal subjects.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazmiño-Arteaga, J., Gallardo, C., González-Rodríguez, T. et al. Loss of Sensory Cup Quality: Physiological and Chemical Changes during Green Coffee Storage. Plant Foods Hum Nutr 77, 1–11 (2022). https://doi.org/10.1007/s11130-022-00953-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-00953-8

Keywords

Navigation