Skip to main content

Advertisement

Log in

Protease Inhibitors from Plants as Therapeutic Agents- A Review

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Plant-based diets are a great source of protease inhibitors (PIs). Two of the most well-known families of PIs are Bowman-Birk inhibitors (BBI) and Kunitz-type inhibitors (KTI). The first group acts mainly on trypsin, chymotrypsin, and elastase; the second is on serine, cysteine, and aspartic proteases. PIs can retard or inhibit the catalytic action of enzymes; therefore, they are considered non-nutritional compounds; nevertheless, animal studies and cell line experiments showed promising results of PIs in treating human illnesses such as obesity, cardiovascular diseases, autoimmune diseases, inflammatory processes, and different types of cancer (gastric, colorectal, breast, and lung cancer). Anticarcinogenic activity's proposed mechanisms of action comprise several inhibitory effects at different molecular levels, i.e., transcription, post-transcription, translation, post-translation, and secretion of cancer cells. This work reviews the potential therapeutic applications of PIs as anticarcinogenic and anti-inflammatory agents in human diseases and the mechanisms by which they exert these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hellinger R, Gruber CW (2019) Peptide-based protease inhibitors from plants. Drug Discov Today 24(9):1877–1889. https://doi.org/10.1016/j.drudis.2019.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harish BS, Uppuluri KB (2018) Microbial serine protease inhibitors and their therapeutic applications. Int J Biol Macromol 107(Pt B):1373–1387. https://doi.org/10.1016/j.ijbiomac.2017.09.115

    Article  CAS  PubMed  Google Scholar 

  3. Clemente M, Corigliano MG, Pariani SA, Sánchez-López EF, Sander VA, Ramos-Duarte VA (2019) Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming. Int J Mol Sci 20(6). https://doi.org/10.3390/ijms20061345

  4. Castro HC, Abreu PA, Geraldo RB, Martins RC, dos Santos R, Loureiro NI, Cabral LM, Rodrigues CR (2011) Looking at the proteases from a simple perspective. J Mol Recognit 24(2):165–181. https://doi.org/10.1002/jmr.1091

    Article  CAS  PubMed  Google Scholar 

  5. Bauvois B (2004) Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis? Oncogene 23(2):317–329. https://doi.org/10.1038/sj.onc.1207124

    Article  CAS  PubMed  Google Scholar 

  6. Petzold HE, Zhao M, Beers EP (2012) Expression and functions of proteases in vascular tissues. Physiol Plant 145(1):121–129. https://doi.org/10.1111/j.1399-3054.2011.01538.x

    Article  CAS  PubMed  Google Scholar 

  7. Moffitt KL, Martin SL, Walker B (2010) Proteases implicated in apoptosis: old and new. J Pharm Pharmacol 62(5):563–576. https://doi.org/10.1211/jpp.62.05.0002

    Article  CAS  PubMed  Google Scholar 

  8. Regulski M, Regulska K, Stanisz BJ, Murias M, Gieremek P, Wzgarda A, Niznik B (2015) Chemistry and pharmacology of Angiotensin-converting enzyme inhibitors. Curr Pharm Des 21(13):1764–1775. https://doi.org/10.2174/1381612820666141112160013

    Article  CAS  PubMed  Google Scholar 

  9. Srikanth S, Chen Z (2016) Plant Protease inhibitors in therapeutics-focus on cancer therapy. Front Pharmacol 7:470. https://doi.org/10.3389/fphar.2016.00470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rahate KA, Madhumita M, Prabhakar PK (2021) Nutritional composition, antinutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): a comprehensive review. LWT 138:110796. https://doi.org/10.1016/j.lwt.2020.110796

  11. Mosolov VV, Valueva TA (2005) Proteinase inhibitors and their function in plants:a review. Appl Biochem Microbiol 41(3):227–246. https://doi.org/10.1007/s10438-005-0040-6

    Article  CAS  Google Scholar 

  12. Losso JN (2008) The biochemical and functional food properties of the bowman-birk inhibitor. Crit Rev Food Sci Nutr 48(1):94–118. https://doi.org/10.1080/10408390601177589

    Article  CAS  PubMed  Google Scholar 

  13. Gitlin-Domagalska A, Maciejewska A, Dębowski D (2020) Bowman-Birk inhibitors: insights into family of multifunctional proteins and peptides with potential therapeutical applications. Pharmaceuticals (Basel) 13(12). https://doi.org/10.3390/ph13120421

  14. Oliva ML, Silva MC, Sallai RC, Brito MV, Sampaio MU (2010) A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie 92(11):1667–1673. https://doi.org/10.1016/j.biochi.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  15. Kuhar K, Kansal R, Subrahmanyam B, Koundal K, Miglani K, Gupta V (2013) A Bowman-Birk protease inhibitor with antifeedant and antifungal activity from Dolichos biflorus. Acta Physiol Plant 35(6):1887–1903. https://doi.org/10.1007/s11738-013-1227-8

    Article  CAS  Google Scholar 

  16. Machado RJ, Monteiro NK, Migliolo L, Silva ON, Pinto MF, Oliveira AS, Franco OL, Kiyota S, Bemquerer MP, Uchoa AF, Morais AH, Santos EA (2013) Characterization and pharmacological properties of a novel multifunctional Kunitz inhibitor from Erythrina velutina seeds. PLoS ONE 8(5):e63571. https://doi.org/10.1371/journal.pone.0063571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guerra Y, Valiente P, Pons T, Berry C, Rudiño-Piñera E (2016) Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop? J Struct Biol 195(2):259–271. https://doi.org/10.1016/j.jsb.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  18. Clemente A, Arques Mdel C (2014) Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J Gastroenterol 20(30):10305–10315. https://doi.org/10.3748/wjg.v20.i30.10305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Avilés-Gaxiola S, Chuck-Hernández C, Rocha-Pizaña MR, García-Lara S, López-Castillo LM, Serna-Saldívar SO (2018) Effect of thermal processing and reducing agents on trypsin inhibitor activity and functional properties of soybean and chickpea protein concentrates. LWT 98:629–634. https://doi.org/10.1016/j.lwt.2018.09.023

    Article  CAS  Google Scholar 

  20. Nikmaram N, Leong SY, Koubaa M, Zhu Z, Barba FJ, Greiner R, Oey I, Roohinejad S (2017) Effect of extrusion on the antinutritional factors of food products: an overview. Food Control 79:62–73. https://doi.org/10.1016/j.foodcont.2017.03.027

    Article  CAS  Google Scholar 

  21. Popova A, Mihaylova D (2019) Antinutrients in plant-based foods: a review. Open Biotechnol J 13(1). https://doi.org/10.2174/1874070701913010068

  22. Pusztai A, Bardocz S, Martín-Cabrejas MA (2004) The mode of action of ANFs on the gastrointestinal tract and its microflora. In: Publishers WA (ed) Recent advances of research in antinutritional factors in legume seeds and oilseeds, vol 110. Wageningen Academic Publishers, Wageningen, The Netherlands, pp 87–100. https://doi.org/10.3920/978-90-8686-524-6

  23. Kiran KS, Padmaja G (2003) Inactivation of trypsin inhibitors in sweet potato and taro tubers during processing. Plant Foods Hum Nutr 58(2):153–163. https://doi.org/10.1023/a:1024476513899

    Article  PubMed  Google Scholar 

  24. He H, Li X, Kong X, Hua Y, Chen Y (2017) Heat-induced inactivation mechanism of soybean Bowman-Birk inhibitors. Food Chem 232:712–720. https://doi.org/10.1016/j.foodchem.2017.04.061

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Xu Z, Zhang C, Kong X, Hua Y (2014) Heat-induced inactivation mechanisms of Kunitz trypsin inhibitor and Bowman-Birk inhibitor in soymilk processing. Food Chem 154:108–116. https://doi.org/10.1016/j.foodchem.2013.12.092

    Article  CAS  PubMed  Google Scholar 

  26. Samtiya M, Aluko RE, Dhewa T (2020) Plant food antinutritional factors and their reduction strategies: an overview. Food Prod Process Nutr 2(1):6. https://doi.org/10.1186/s43014-020-0020-5

    Article  Google Scholar 

  27. Pedrosa MM, Varela A, Domínguez-Timón F, Tovar CA, Moreno HM, Borderías AJ, Díaz MT (2020) Comparison of bioactive compounds content and techno-functional properties of pea and bean flours and their protein isolates. Plant Foods Hum Nutr 75(4):642–650. https://doi.org/10.1007/s11130-020-00866-4

    Article  CAS  PubMed  Google Scholar 

  28. Fook JM, Macedo LL, Moura GE, Teixeira FM, Oliveira AS, Queiroz AF, Sales MP (2005) A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase. Life Sci 76(25):2881–2891. https://doi.org/10.1016/j.lfs.2004.10.053

    Article  CAS  PubMed  Google Scholar 

  29. Mello GC, Desouza IA, Marangoni S, Novello JC, Antunes E, Macedo MLR (2006) Oedematogenic activity induced by Kunitz-type inhibitors from Dimorphandra mollis seeds. Toxicon 47(2):150–155. https://doi.org/10.1016/j.toxicon.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  30. Oliva ML, Souza-Pinto JC, Batista IF, Araujo MS, Silveira VF, Auerswald EA, Mentele R, Eckerskorn C, Sampaio MU, Sampaio CA (2000) Leucaena leucocephala serine proteinase inhibitor: primary structure and action on blood coagulation, kinin release and rat paw edema. Biochim Biophys Acta 1477(1–2):64–74. https://doi.org/10.1016/s0167-4838(99)00285-x

    Article  CAS  PubMed  Google Scholar 

  31. de Freitas MAG, Amaral NO, Álvares ACM, de Oliveira SA, Mehdad A, Honda DE, Bessa ASM, Ramada MHS, Naves LM, Pontes CNR, Castro CH, Pedrino GR, de Freitas SM (2020) Blood pressure-lowering effects of a Bowman-Birk inhibitor and its derived peptides in normotensive and hypertensive rats. Sci Rep 10(1):11680. https://doi.org/10.1038/s41598-020-66624-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm KS, Park Y (2009) Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci 10(6):2860–2872. https://doi.org/10.3390/ijms10062860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amancha KP, Hussain A (2015) Effect of protease inhibitors on pulmonary bioavailability of therapeutic proteins and peptides in the rat. Eur J Pharm Sci 68:1–10. https://doi.org/10.1016/j.ejps.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  34. Oliveira de Lima C, Piuvezam G, Leal Lima Maciel B, de Araújo H, Morais A (2019) Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J Enzyme Inhib Med Chem 34(1):405–419. https://doi.org/10.1080/14756366.2018.1542387

    Article  CAS  Google Scholar 

  35. Dias GB, Gomes VM, Pereira UZ, Ribeiro SF, Carvalho AO, Rodrigues R, Machado OL, Fernandes KV, Ferreira AT, Perales J, Da Cunha M (2013) Isolation, characterization and antifungal activity of proteinase inhibitors from Capsicum chinense Jacq. Seeds Protein J 32(1):15–26. https://doi.org/10.1007/s10930-012-9456-z

    Article  CAS  PubMed  Google Scholar 

  36. Araújo NMS, Dias LP, Costa HPS, Sousa DOB, Vasconcelos IM, de Morais GA, Oliveira JTA (2019) ClTI, a Kunitz trypsin inhibitor purified from Cassia leiandra Benth. seeds, exerts a candidicidal effect on Candida albicans by inducing oxidative stress and necrosis. Biochim Biophys Acta Biomembr 1861(11):183032. https://doi.org/10.1016/j.bbamem.2019.183032

  37. Nabi M, Bhat A, Abeer Rasool SU, Ashraf S, Maqbool R, Ahmad Ganie S, Amin S (2018) Physio-chemical characterization and anti-microbial activity of serine protease inhibitors purified from the Sophora japonica Seeds. Pak J Biol Sci 21(9):432–440. https://doi.org/10.3923/pjbs.2018.432.440

    Article  CAS  PubMed  Google Scholar 

  38. Serquiz AC, Machado RJ, Serquiz RP, Lima VC, de Carvalho FM, Carneiro MA, Maciel BL, Uchôa AF, Santos EA, Morais AH (2016) Supplementation with a new trypsin inhibitor from peanut is associated with reduced fasting glucose, weight control, and increased plasma CCK secretion in an animal model. J Enzyme Inhib Med Chem 31(6):1261–1269. https://doi.org/10.3109/14756366.2015.1103236

    Article  CAS  PubMed  Google Scholar 

  39. Chandra R, Liddle RA (2007) Cholecystokinin. Curr Opin Endocrinol Diabetes Obes 14(1):63–67. https://doi.org/10.1097/MED.0b013e3280122850

    Article  CAS  PubMed  Google Scholar 

  40. Costa HP, Oliveira JT, Sousa DO, Morais JK, Moreno FB, Monteiro-Moreira AC, Viegas RA, Vasconcelos IM (2014) JcTI-I: a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment. Front Microbiol 5:5. https://doi.org/10.3389/fmicb.2014.00005

    Article  PubMed  PubMed Central  Google Scholar 

  41. Martins TF, Vasconcelos IM, Silva RGG, Silva FDA, Souza PFN, Varela ALN, Albuquerque LM, Oliveira JTA (2018) A Bowman-Birk Inhibitor from the Seeds of Luetzelburgia auriculata Inhibits Staphylococcus aureus Growth by Promoting Severe Cell Membrane Damage. J Nat Prod 81(7):1497–1507. https://doi.org/10.1021/acs.jnatprod.7b00545

    Article  CAS  PubMed  Google Scholar 

  42. da Cunha Morales Álvares A, Schwartz EF, Amaral NO, Trindade NR, Pedrino GR, Silva LP, de Freitas SM, (2014) Bowman-Birk protease inhibitor from Vigna unguiculata seeds enhances the action of bradykinin-related peptides. Molecules 19(11):17536–17558. https://doi.org/10.3390/molecules191117536

    Article  CAS  Google Scholar 

  43. Qi RF, Song ZW, Chi CW (2005) Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application. Acta Biochim Biophys Sin (Shanghai) 37(5):283–292. https://doi.org/10.1111/j.1745-7270.2005.00048.x

    Article  CAS  Google Scholar 

  44. Touil T, Ciric B, Ventura E, Shindler KS, Gran B, Rostami A (2008) Bowman-Birk inhibitor suppresses autoimmune inflammation and neuronal loss in a mouse model of multiple sclerosis. J Neurol Sci 271(1–2):191–202. https://doi.org/10.1016/j.jns.2008.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dai H, Ciric B, Zhang GX, Rostami A (2012) Interleukin-10 plays a crucial role in suppression of experimental autoimmune encephalomyelitis by Bowman-Birk inhibitor. J Neuroimmunol 245(1–2):1–7. https://doi.org/10.1016/j.jneuroim.2012.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Safavi F, Rostami A (2012) Role of serine proteases in inflammation: Bowman-Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp Mol Pathol 93(3):428–433. https://doi.org/10.1016/j.yexmp.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  47. Selma-Gracia R, Haros CM, Laparra JM (2020) Kinetic approach to the influence of chia flour on glucose bioaccessibility from hydrothermally treated maize and quinoa starch. Plant Foods Hum Nutr 75(4):592–598. https://doi.org/10.1007/s11130-020-00854-8

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Ye L, Cook DR, Wang X, Liu J, Kolson DL, Persidsky Y, Ho WZ (2011) Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages. J Neuroinflammation 8:15. https://doi.org/10.1186/1742-2094-8-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arbogast S, Smith J, Matuszczak Y, Hardin BJ, Moylan JS, Smith JD, Ware J, Kennedy AR, Reid MB (2007) Bowman-Birk inhibitor concentrate prevents atrophy, weakness, and oxidative stress in soleus muscle of hindlimb-unloaded mice. J Appl Physiol 102(3):956–964. https://doi.org/10.1152/japplphysiol.00538.2006

    Article  CAS  PubMed  Google Scholar 

  50. Mehdad A, Brumana G, Souza AA, Barbosa J, Ventura MM, de Freitas SM (2016) A Bowman-Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition. Cell Death Discov 2:15067. https://doi.org/10.1038/cddiscovery.2015.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lichtenstein GR, Deren JJ, Katz S, Lewis JD, Kennedy AR, Ware JH (2008) Bowman-Birk inhibitor concentrate: a novel therapeutic agent for patients with active ulcerative colitis. Dig Dis Sci 53(1):175–180. https://doi.org/10.1007/s10620-007-9840-2

    Article  CAS  PubMed  Google Scholar 

  52. Kennedy AR, Billings PC, Wan XS, Newberne PM (2002) Effects of Bowman-Birk inhibitor on rat colon carcinogenesis. Nutr Cancer 43(2):174–186. https://doi.org/10.1207/s15327914nc432_8

    Article  CAS  PubMed  Google Scholar 

  53. de Paula CA, de Abreu Vieira PM, Silva KT, de Sá Cota RG, Carneiro CM, Castro-Borges W, de Andrade MH (2012) Bowman-Birk inhibitors, proteasome peptidase activities and colorectal pre neoplasias induced by 1,2-dimethylhydrazine in Swiss mice. Food Chem Toxicol 50(5):1405–1412. https://doi.org/10.1016/j.fct.2012.01.036

    Article  CAS  Google Scholar 

  54. Clemente A, Moreno FJ, Marín-Manzano Mdel C, Jiménez E, Domoney C (2010) The cytotoxic effect of Bowman-Birk isoinhibitors, IBB1 and IBBD2, from soybean (Glycine max) on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases. Mol Nutr Food Res 54(3):396–405. https://doi.org/10.1002/mnfr.200900122

    Article  CAS  PubMed  Google Scholar 

  55. Joanitti GA, Azevedo RB, Freitas SM (2010) Apoptosis and lysosome membrane permeabilization induction on breast cancer cells by an anticarcinogenic Bowman-Birk protease inhibitor from Vigna unguiculata seeds. Cancer Lett 293(1):73–81. https://doi.org/10.1016/j.canlet.2009.12.017

    Article  CAS  PubMed  Google Scholar 

  56. Armstrong WB, Taylor TH, Kennedy AR, Melrose RJ, Messadi DV, Gu M, Le AD, Perloff M, Civantos F, Goodwin WJ, Wirth LJ, Kerr AR, Meyskens FL Jr (2013) Bowman birk inhibitor concentrate and oral leukoplakia: a randomized phase IIb trial. Cancer Prev Res (Phila) 6(5):410–418. https://doi.org/10.1158/1940-6207.Capr-13-0004

    Article  CAS  Google Scholar 

  57. Avilés-Gaxiola S, Gutiérrez-Grijalva EP, León-Felix J, Angulo-Escalante MA, Heredia JB (2020) Peptides in colorectal cancer: current state of knowledge. Plant Foods Hum Nutr 75(4):467–476. https://doi.org/10.1007/s11130-020-00856-6

    Article  PubMed  Google Scholar 

  58. Zhang L, Wan XS, Donahue JJ, Ware JH, Kennedy AR (1999) Effects of the Bowman-Birk inhibitor on clonogenic survival and cisplatin- or radiation-induced cytotoxicity in human breast, cervical, and head and neck cancer cells. Nutr Cancer 33(2):165–173. https://doi.org/10.1207/s15327914nc330208

    Article  CAS  PubMed  Google Scholar 

  59. Oster SK, Ho CSW, Soucie EL, Penn LZ (2002) The myc oncogene: marvelously complex. In: Advances in Cancer Research, vol 84. Academic Press, pp 81–154. https://doi.org/10.1016/S0065-230X(02)84004-0

  60. Kang SM, Lim S, Won SJ, Shin YJ, Lim YS, Ahn BY, Hwang SB (2011) c-Fos regulates hepatitis C virus propagation. FEBS Lett 585(20):3236–3244. https://doi.org/10.1016/j.febslet.2011.08.041

    Article  CAS  PubMed  Google Scholar 

  61. Hanahan D, Weinberg RA (2011) Hallmarks of Cancer: The Next Generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  62. Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, Zaccheddu A, Colone M, Arancia G, Gentile M, Seregni E, Valenti R, Ballabio G, Belli F, Leo E, Parmiani G, Rivoltini L (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128(7):1796–1804. https://doi.org/10.1053/j.gastro.2005.03.045

    Article  CAS  PubMed  Google Scholar 

  63. Soreide K, Janssen EA, Körner H, Baak JP (2006) Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. J Pathol 209(2):147–156. https://doi.org/10.1002/path.1999

    Article  CAS  PubMed  Google Scholar 

  64. Rakashanda S, Qazi AK, Majeed R, Rafiq S, Dar IM, Masood A, Hamid A, Amin S (2013) Antiproliferative activity of Lavatera cashmeriana- protease inhibitors towards human cancer cells. Asian Pac J Cancer Prev 14(6):3975–3978. https://doi.org/10.7314/apjcp.2013.14.6.3975

    Article  PubMed  Google Scholar 

  65. Fereidunian A, Sadeghalvad M, Oscoie MO, Mostafaie A (2014) Soybean Bowman-Birk protease inhibitor (BBI): identification of the mechanisms of BBI suppressive effect on growth of two adenocarcinoma cell lines: AGS and HT29. Arch Med Res 45(6):455–461. https://doi.org/10.1016/j.arcmed.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  66. Miedzianka J, Pęksa A, Nemś A, Drzymała K, Zambrowicz A, Kowalczewski P (2020) Trypsin inhibitor, antioxidant and antimicrobial activities as well as chemical composition of potato sprouts originating from yellow- and colored-fleshed varieties. J Environ Sci Health B 55(1):42–51. https://doi.org/10.1080/03601234.2019.1657764

    Article  CAS  PubMed  Google Scholar 

  67. Kobayashi H (2013) Prevention of cancer and inflammation by soybean protease inhibitors. Front Biosci (Elite Ed) 5:966–973. https://doi.org/10.2741/e676

    Article  Google Scholar 

  68. Cruz-Huerta E, Fernández-Tomé S, Arques MC, Amigo L, Recio I, Clemente A, Hernández-Ledesma B (2015) The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: the effect of released peptides on colon cancer growth. Food Funct 6(8):2626–2635. https://doi.org/10.1039/c5fo00454c

    Article  CAS  PubMed  Google Scholar 

  69. Kobayashi H, Suzuki M, Kanayama N, Terao T (2004) A soybean Kunitz trypsin inhibitor suppresses ovarian cancer cell invasion by blocking urokinase upregulation. Clin Exp Metastasis 21(2):159–166. https://doi.org/10.1023/b:clin.0000024751.73174.c2

    Article  CAS  PubMed  Google Scholar 

  70. Kennedy AR (1998) Chemopreventive agents: protease inhibitors. Pharmacol Ther 78(3):167–209. https://doi.org/10.1016/s0163-7258(98)00010-2

    Article  CAS  PubMed  Google Scholar 

  71. Kaneko S, Yamazaki T, Kohno K, Sato A, Kato K, Yano T (2019) Combination effect of Bowman-Birk inhibitor and α-Tocopheryl succinate on prostate cancer stem-like cells. J Nutr Sci Vitaminol (Tokyo) 65(3):272–277. https://doi.org/10.3177/jnsv.65.272

    Article  CAS  Google Scholar 

  72. Kyani S, Akrami H, Mostafaei A, Akbari S, Salehi Z (2020) Inhibitory effect of Bowman-Birk protease inhibitor on autophagy in MDAMB231 breast cancer cell line. J Cancer Res Ther. https://doi.org/10.4103/jcrt.JCRT_622_18

    Article  Google Scholar 

  73. Ragg EM, Galbusera V, Scarafoni A, Negri A, Tedeschi G, Consonni A, Sessa F, Duranti M (2006) Inhibitory properties and solution structure of a potent Bowman-Birk protease inhibitor from lentil (Lens culinaris L) seeds. Febs J 273(17):4024–4039. https://doi.org/10.1111/j.1742-4658.2006.05406.x

    Article  CAS  PubMed  Google Scholar 

  74. Clemente A, Gee JM, Johnson IT, Mackenzie DA, Domoney C (2005) Pea (Pisum sativum L.) protease inhibitors from the Bowman-Birk class influence the growth of human colorectal adenocarcinoma HT29 cells in vitro. J Agric Food Chem 53 (23):8979–8986. https://doi.org/10.1021/jf051528w

  75. Chan YS, Zhang Y, Ng TB (2013) Brown Kidney Bean Bowman-Birk Trypsin Inhibitor is Heat and pH Stable and Exhibits Antiproliferative Activity. Appl Biochem Biotechnol 169(4):1306–1314. https://doi.org/10.1007/s12010-012-9998-8

    Article  CAS  PubMed  Google Scholar 

  76. Muricken DG (1804) Gowda LR (2010) Functional expression of horsegram (Dolichos biflorus) Bowman-Birk inhibitor and its self-association. Biochim Biophys Acta 7:1413–1423. https://doi.org/10.1016/j.bbapap.2010.02.012

    Article  CAS  Google Scholar 

  77. Saito T, Sato H, Virgona N, Hagiwara H, Kashiwagi K, Suzuki K, Asano R, Yano T (2007) Negative growth control of osteosarcoma cell by Bowman-Birk protease inhibitor from soybean; involvement of connexin 43. Cancer Lett 253(2):249–257. https://doi.org/10.1016/j.canlet.2007.01.021

    Article  CAS  PubMed  Google Scholar 

  78. Oliveira de Lima VC, de Araújo Machado RJ, Vieira Monteiro NK, de Lyra IL, da Silva CC, Coelho Serquiz A, Silva de Oliveira A, da Silva Rufino FP, Leal Lima Maciel B, Ferreira Uchôa A, Antunes Dos Santos E, de Araújo Morais AH (2017) Gastroprotective and antielastase effects of protein inhibitors from Erythrina velutina seeds in an experimental ulcer model. Biochem Cell Biol 95(2):243–250. https://doi.org/10.1139/bcb-2016-0034

    Article  CAS  PubMed  Google Scholar 

  79. de Lumen BO (2005) Lunasin: a cancer-preventive soy peptide. Nutr Rev 63(1):16–21. https://doi.org/10.1111/j.1753-4887.2005.tb00106.x

    Article  PubMed  Google Scholar 

  80. Hsieh CC, Hernández-Ledesma B, Jeong HJ, Park JH, de Lumen BO (2010) Complementary roles in cancer prevention: protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PLoS ONE 5(1):e8890. https://doi.org/10.1371/journal.pone.0008890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Instituto Politécnico Nacional for the financial support through grant SIP project 20210017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. M. Sánchez-Chino.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cid-Gallegos, M.S., Corzo-Ríos, L.J., Jiménez-Martínez, C. et al. Protease Inhibitors from Plants as Therapeutic Agents- A Review. Plant Foods Hum Nutr 77, 20–29 (2022). https://doi.org/10.1007/s11130-022-00949-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-00949-4

Keywords

Navigation