Skip to main content
Log in

Blueberry Residue Encapsulation by Ionotropic Gelation

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

In the processing of fruits such as blueberry (Vaccinium sp), that has high levels of phenolic acid, the food industry produces tons of organic waste that causes harm to the environment. Encapsulation is a technique used to take advantage of these wastes. Several methods are used to encapsulate substances, among them ionotropic gelation proves to be a simple, precise, efficient and economical method for obtaining particles with encapsulated bioactives. In this manner, the aim of this study was to test sodium alginate as wall material to encapsulate blueberry residue by ionotropic gelation. The microbeads were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), total phenolic compounds, antioxidant capacity and in vitro dissolution. The results showed that the microbeads had surface invagination; retention of 67.01% of the phenolic compounds after encapsulation and 68.2%, phenolic release 120 min after in vitro dissolution. The results suggest that the tested matrix was suitable for encapsulation. The produced microbeads are promising for applications in food products, once the phenolic compounds present in the blueberry residues were maintained after encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbezothiazoline-6- 6-sulphonic acid)

ANOVA:

Analyses of variance

CAPES:

Coordination for the improvement of higher education personnel

CCRD:

Central composite rotatable design

FDA:

Food and drug administration

FRAP:

Ferric reducing antioxidant power

GAE:

Gallic acid equivalent

ROS:

Reactive oxygen species

SEM:

Scanning electron microscopy

TEAC:

Trolox equivalent antioxidant capacity

USP:

United states pharmacopeia

XRD:

X - ray diffraction

References

  1. Garcia-Garcia G, Woolley E, Rahimifard S (2017) Optimising industrial food waste management. Procedia Manuf 8:432–439. https://doi.org/10.1016/j.promfg.2017.02.055

    Article  Google Scholar 

  2. Scherhaufer S, Moates G, Hartikainen H et al (2018) Environmental impacts of food waste in Europe. Waste Manag 77:98–113. https://doi.org/10.1016/j.wasman.2018.04.038

    Article  PubMed  Google Scholar 

  3. Mallik AU, Hamilton J (2017) Harvest date and storage effect on fruit size, phenolic content and antioxidant capacity of wild blueberries of NW Ontario, Canada. J Food Sci Technol 54:1545–1554. https://doi.org/10.1007/s13197-017-2586-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodrigues E, Poerner N, Rockenbach II et al (2011) Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Food Sci Technol 31:911–917. https://doi.org/10.1590/S0101-20612011000400013

    Article  Google Scholar 

  5. Kang J, Thakali KM, Jensen GS, Wu X (2015) Phenolic acids of the two major blueberry species in the US market and their antioxidant and anti-inflammatory activities. Plant Foods Hum Nutr 70:56–62. https://doi.org/10.1007/s11130-014-0461-6

    Article  CAS  PubMed  Google Scholar 

  6. Zhong S, Sandhu A, Edirisinghe I, Burton-Freeman B (2017) Characterization of wild blueberry polyphenols bioavailability and kinetic profile in plasma over 24-h period in human subjects. Mol Nutr Food Res 61:1–45. https://doi.org/10.1002/mnfr.201700405

    Article  Google Scholar 

  7. Fang Z (2010) Encapsulation of polyphenols - a review. Trends Food Sci Technol 21:510–523. https://doi.org/10.1016/j.tifs.2010.08.003

    Article  CAS  Google Scholar 

  8. Li X, Wu Z, He Y et al (2017) Preparation and characterization of monodisperse microcapsules with alginate and bentonite via external gelation technique encapsulating Pseudomonas putida Rs-198. J Biomater Sci Polym Ed 28:1556–1571. https://doi.org/10.1080/09205063.2017.1335075

    Article  CAS  PubMed  Google Scholar 

  9. López-Cacho JM, González-R PL, Talero B et al (2012) Robust optimization of alginate-Carbopol 940 bead formulations. Sci World J 2012:15. https://doi.org/10.1100/2012/605610

    Article  Google Scholar 

  10. Araujo-Díaz SB, Leyva-Porras C, Aguirre-Bañuelos P et al (2017) Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydr Polym 167:317–325. https://doi.org/10.1016/j.carbpol.2017.03.065

    Article  CAS  PubMed  Google Scholar 

  11. Guo J, Giusti MM, Kaletunç G (2018) Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: impact of processing and storage parameters on encapsulation efficiency. Food Res Int 107:414–422. https://doi.org/10.1016/j.foodres.2018.02.035

    Article  CAS  PubMed  Google Scholar 

  12. Flores FP, Singh RK, Kerr WL et al (2015) In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chem 168:225–232. https://doi.org/10.1016/j.foodchem.2014.07.059

    Article  CAS  Google Scholar 

  13. Avram AM, Morin P, Brownmiller C et al (2017) Concentrations of polyphenols from blueberry pomace extract using nanofiltration. Food Bioprod Process 106:91–101. https://doi.org/10.1016/j.fbp.2017.07.006

    Article  CAS  Google Scholar 

  14. Ćujić N, Trifković K, Bugarski B et al (2016) Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Ind Crop Prod 86:120–131. https://doi.org/10.1016/j.indcrop.2016.03.045

    Article  Google Scholar 

  15. AOAC (1990) Official methods of analysis. Association of Official Agricultural Chemists 15th ed. Washington, DC, p 136–138

  16. Larrauri JA, Rupérez P, Saura-Calixto F (1997) Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J Agric Food Chem 45:1390–1393. https://doi.org/10.1021/jf960282f

    Article  CAS  Google Scholar 

  17. Rufino MSM, Alves RE, Brito ES, Pérez-Jiménez J et al (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

    Article  CAS  Google Scholar 

  18. Obanda M, Owuor PO (1997) Flavanol composition and caffeine content of green leaf as quality potential indicators of kenyan black teas. J Sci Food Agric 74:209–215

    Article  CAS  Google Scholar 

  19. Benzie IFF, Strain JJ (1999) Ferric reducing (antioxidant) power as a measure of antioxidant capacity: the FRAP assay. Methods Enzymol 299:15–36

    Article  CAS  Google Scholar 

  20. Miller NJ, Rice-Evans C, Davies MJ et al (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412. https://doi.org/10.1042/cs0840407

    Article  CAS  PubMed  Google Scholar 

  21. Brown WE, Marques MR (2014) USP and dissolution—20 years of progress. Dissolution Technol: 24–27

  22. Vasile FE, Judis MA, Mazzobre MF (2017) Prosopis alba exudate gum as novel excipient for fish oil encapsulation in polyelectrolyte bead system. Carbohydr Polym 166:309–319. https://doi.org/10.1016/j.carbpol.2017.03.004

    Article  CAS  Google Scholar 

  23. Knez M, Nikolic M, Zekovic M et al (2017) The influence of food consumption and socio-economic factors on the relationship between zinc and iron intake and status in a healthy population. Public Health Nutr 20:2486–2498. https://doi.org/10.1017/S1368980017001240

    Article  PubMed  Google Scholar 

  24. Belščak-Cvitanovic A, Bušić A, Barišić L et al (2016) Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll 57:139–152. https://doi.org/10.1016/j.foodhyd.2016.01.020

    Article  Google Scholar 

  25. Fontes GC, Calado VMA, Rossi AM et al (2013) Characterization of antibiotic-loaded alginate-osa starch microbeads produced by ionotropic pregelation. Biomed Res Int 2013:11. https://doi.org/10.1155/2013/472626

    Article  Google Scholar 

  26. Basu SK, Rajendran A (2008) Studies in the development of nateglinide loaded calcium alginate and chitosan coated calcium alginate beads. Chem Pharm Bull (Tokyo) 56:1077–1084. https://doi.org/10.1248/cpb.56.1077

    Article  CAS  Google Scholar 

  27. Pothakamury UR, Barbosa-Cánovas GV (1995) Fundamental aspects of controlled release in foods. Trends Food Sci Technol 6:397–406. https://doi.org/10.1016/S0924-2244(00)89218-3

    Article  CAS  Google Scholar 

  28. Maderuelo C, Zarzuelo A, Lanao JM (2011) Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release 154:2–19. https://doi.org/10.1016/j.jconrel.2011.04.002

    Article  CAS  Google Scholar 

  29. Bettini R, Catellani PL, Santi P et al (2001) Translocation of drug particles in HPMC matrix gel layer: effect of drug solubility and influence on release rate. J Control Release 70:383–391. https://doi.org/10.1016/S0168-3659(00)00366-7

    Article  CAS  PubMed  Google Scholar 

  30. Bittencourt LLA, Pedrosa C, Sousa VP et al (2013) Pea protein provides a promising matrix for microencapsulating iron. Plant Foods Hum Nutr 68:333–339. https://doi.org/10.1007/s11130-013-0383-8

    Article  Google Scholar 

  31. Hellen CUT (2007) Bypassing translation initiation. Structure 15:4–6. https://doi.org/10.1016/j.str.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Obreque-Slier E, Peña-Neira Á, López-Solís R et al (2010) Comparative study of the phenolic composition of seeds and skins from carménère and cabernet sauvignon grape varieties (Vitis vinifera L.) during ripening. J Agric Food Chem 58:3591–3599. https://doi.org/10.1021/jf904314u

    Article  CAS  Google Scholar 

  33. Pertuzatti PB, Barcia MT, Rodrigues D et al (2014) Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries. Food Chem 164:81–88. https://doi.org/10.1016/j.foodchem.2014.04.114

    Article  CAS  PubMed  Google Scholar 

  34. Chotiko A, Sathivel S (2017) Releasing characteristics of anthocyanins extract in pectin–whey protein complex microcapsules coated with zein. J Food Sci Technol 54:2059–2066. https://doi.org/10.1007/s13197-017-2643-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Z, Li Y, Chen L et al (2013) A study of controlled uptake and release of anthocyanins by oxidized starch microgels. J Agric Food Chem 61:5880–5887

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the institutions: Coordination for the Improvement of Higher Education Personnel (CAPES) and Federal University of Rio de Janeiro for the financial support of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Linhares de Azevedo Bittencourt.

Ethics declarations

Conflict of Interest

We declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittencourt, L.L.d., Silva, K.A., de Sousa, V.P. et al. Blueberry Residue Encapsulation by Ionotropic Gelation. Plant Foods Hum Nutr 73, 278–286 (2018). https://doi.org/10.1007/s11130-018-0685-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-018-0685-y

Keywords

Navigation