Skip to main content
Log in

Nutraceutical Properties of Herbal Infusions from Six Native Plants of Argentine Patagonia

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Six native plants of South America traditionally consumed in the Patagonian region (southern Argentina and Chile), namely: Adesmia boronioides Hook. f., Apium australe Thouars, Buddleja globosa Hope, Drimys andina (Reiche) R. Rodr. & Quezada, Dysphania multifida L. and Solidago chilensis Meyen were investigated to determine the nutraceutical properties of infusions of their aerial parts. The infusions were characterized in terms of their antioxidant activity, phenolic and flavonoid content, profile of phenolic compounds, general toxicity and cytotoxicity on two different human cell lines: T84 (derived from colon cancer) and HTR8/SVneo (not derived from cancer). Twenty-nine compounds, mainly phenolic acids and flavonoids, were identified. This is the first analysis of phenolic compounds in infusions from native plants of Patagonia. D. andina, B. globosa and S. chilensis showed high levels of antioxidants, even higher than those of Green Tea. The content of phenolic compounds correlated significantly with the antioxidant activity of the samples analyzed. The toxicity test indicated that the use of A. australe, B. globosa and D. multifida seems safe, but a moderate consumption is suggested for A. boronioides, D. andina and S. chilensis until more exhaustive and long-term results are available. Moreover, A. boronioides and S. chilensis showed anticancer potential due to their antiproliferative activity on human cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ATCC:

American Type Culture Collection

BCB:

β-carotene-linoleic acid method

DPPH:

2,2′-diphenyl-1-picrylhydrazyl

EC50:

Efficient concentration 50

GAE:

Gallic acid equivalent

HTR8/SVneo:

Cancer cell line from placental tissue

LC50:

Lethal concentration 50

LC-DAD-MS:

Liquid chromatography with diode array detection with tandem mass spectrometry

MTT:

Methylthiazolyldiphenyl-tetrazolium bromide

QE:

Quercetin equivalent

T84:

Cancer cell line from colon

TPC:

Total phenolic compound content

TF:

Total flavonoid content

VCEAC:

Vitamin C equivalent antioxidant capacity

References

  1. Kalra EK (2003) Nutraceutical-definition and introduction. AAPS PharmSciTech 5(3):1–2

    Article  Google Scholar 

  2. Gentile C, Reig C, Corona O, Farina V et al (2016) Pomological traits, sensory profile and nutraceutical properties of nine cultivars of loquat (Eriobotrya japonica Lindl.) fruits grown in mediterranean area. Plant Foods Hum Nutr 71(3):330–338

    Article  CAS  PubMed  Google Scholar 

  3. Barboza G, Cantero J, Ñúnez C, Pacciaroni A, Espinar LA (2009) Medicinal plants: a general review and a phytochemical and ethnopharmacological screening of the native Argentine Flora. Kurtziana 34:7–365

    Google Scholar 

  4. González SB, Bandoni A, van Baren C, Di Leo Lira P, García C, Joseph-Nathan P (2004) The essential oil of the aerial parts of Adesmia boronioides Hook f. J Essent Oil Res 16:513–516

    Article  Google Scholar 

  5. Schmeda-Hirchsman G, Razmilic L, Gutierrez MI, Loyola JI (1999) Proximal composition and biological activity of food plants gathered by chilean amerindias. Econ Bot 53:177–187

    Article  Google Scholar 

  6. Backhouse N, Rosales L, Apablaza L, Goïty L, Erazo S, Negrete R, Theodoluz C, Rodríguez J, Delporte C (2008) Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae. J Ethnopharmacol 2(5):263–269

    Article  Google Scholar 

  7. Jara-Arancio P, Carmona MR, Correa C, Squeo FA, Arancio G (2012) Leaf morphological and genetic divergence in populations of Drimys (Winteraceae) in Chile. Genet Mol Res 11(1):229–243

    Article  CAS  PubMed  Google Scholar 

  8. Gadano A, Gurni A, Carballo A (2007) Herbal medicines: cytotoxic effects of chenopodiaceae species used in Argentinian folk medicine. Pharm Biol 45(3):217–222

    Article  Google Scholar 

  9. Gastaldi B, Catalan CAN, Silva-Sofrás FM, González SB (2018) Solidago chilensis Meyen (Asteraceae), a medicinal plant from South America. A comprehensive review: ethnomedicinal uses, phytochemistry and bioactivity. B Latinoam Caribe Pl 17(1):17–29

    Google Scholar 

  10. Deetae P, Parichanon P, Trakunleewatthana P, Chanseetis C, Lertsiri S (2012) Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas. Food Chem 133:953–959

    Article  CAS  Google Scholar 

  11. Toit R, Volsteedt Y, Apostolides Z (2001) Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology 166:63–69

    Article  PubMed  Google Scholar 

  12. Da Silva-Port’s P, Chisté RC, Godo HT, Prado MA (2013) The phenolic compounds and the antioxidant potential of infusion of herbs from the Brazilian Amazonian region. Food Res Int 53(2):875–881

    Article  CAS  Google Scholar 

  13. Martins MR, Arantes S, Candeias F, Tinoco MT, Morais JC (2014) Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J Ethnopharmacol 151(1):485–492

    Article  CAS  Google Scholar 

  14. Ismail A, Marjan ZM, Foong CW (2004) Total antioxidant activity and phenolic content in selected vegetables. Food Chem 87:581–586

    Article  CAS  Google Scholar 

  15. Kogiannou D, Kalogeropoulus N, Kefalas P, Polissiou MG, Kaliora A (2013) Herbal infusions; their phenolic profile, antioxidant and anti-inflammatory effects in HT29 and PC3 cell. Food Chem Toxicol 61:152–159

    Article  CAS  PubMed  Google Scholar 

  16. Dudonné S, Vitrac X, Coutiére P, Woillez M, Mérillon JM (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57(5):1768–1774

    Article  CAS  PubMed  Google Scholar 

  17. Li S, Li SK, Gan RY, Song FL, Kuang L, Li HB (2013) Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind Crop Prod 51:289–298

    Article  CAS  Google Scholar 

  18. Marino GI, Assef YA, Kotsias BA (2013) The migratory capacity of human trophoblastic BeWo cells: effects of aldosterone and the epithelial sodium channel. J Membr Biol 246:243–255

    Article  CAS  PubMed  Google Scholar 

  19. Schmeda-Hirchsman G, Quispe C, González B (2015) Phenolic profiling of the South American “Baylahuen” tea (Haplopappus spp., Asteraceae) by HPLC-DAD-ESI-MS. Molecules 20:913–928

    Article  CAS  Google Scholar 

  20. Wagner H, Baldt S (2001) Plant drug analysis. A thin layer chromatography atlas. Springer, München, p 384

    Google Scholar 

  21. Bussman RW, Malca G, Glenn A, Sharon D, Nilsen B, Parris B, Dubose D, Ruid D, Saleda J, Martinez M, Carillo L, Walker K, Kuhlman A, Townesmith A (2011) Toxicity of medicinal plants used in traditional medicine in Northern Peru. J Ethnopharmacol 137:121–140

    Article  Google Scholar 

  22. Pisoschi AM, Pop A, Cimpeanu C, Predoi G (2016) Antioxidant capacity determination in plants and plant-derived products: a review. Oxidative Med Cell Longev 2016:1–36. https://doi.org/10.1155/2016/9130976

    Article  CAS  Google Scholar 

  23. Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal 24:1043–1048

    Article  CAS  Google Scholar 

  24. Moraes-de-Souza RA, Oldoni TLC, Regitano-d’Arce MAB, Alencar SM (2008) Antioxidant activity and phenolic composition of herbal infusions consumed in Brazil. Cienc Tecnol Aliment 6(1):41–47

    Article  CAS  Google Scholar 

  25. Malgalhäes LM, Segundo MA, Reis S, Lima JLFC (2006) Automatic method for determination of total antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Anal Chim Acta 558:310–318

    Article  CAS  Google Scholar 

  26. Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database. https://doi.org/10.1093/database/bap024 Accessed 06 February 2018

  27. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278

    Article  Google Scholar 

  28. Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G (2006) Use of the genus Artemia in ecotoxicity testing. Environ Pollut 144:453–462

    Article  CAS  PubMed  Google Scholar 

  29. Parra AL, Yhebra S, Sardiñas G, Buela LI (2001) Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomed 8(5):395–400

    Article  Google Scholar 

  30. Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD (1993) A microwell cytotoxicity assay using Artemia salina (Brine shrimp). Planta Med 59:250–252

    Article  CAS  PubMed  Google Scholar 

  31. Tao J, Li Y, Li S, Li HB (2018) Plant foods for the prevention and management of colon cancer. J Funct Foods 42:95–110

    Article  CAS  Google Scholar 

  32. Pan MH, Ho CT (2008) Chemopreventive effects of natural dietary compounds on cancer development. Chem Soc Rev 37:2558–2574

    Article  CAS  PubMed  Google Scholar 

  33. Araújo J, Goncalvez P, Martel F (2011) Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 31:77–87

    Article  CAS  PubMed  Google Scholar 

  34. Yanez J, Vicente V, Alcatraz M, Castillo J, Benavente-García O, Canteras M, Teruel L (2004) Cytotoxicity and antiproliferative activities of several phenolic compounds against three melanocytes cell lines: relationship between structure and activity. Nutr Cancer 49(2):191–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Direction of Flora and Fauna Silvestre, Chubut, Argentina, for allowing the sustainable collection of plant material in wild populations. We thank Dr. Nora B. Muruaga and staff of Miguel Lillo Institute for the identification of the botanical material and its deposit in the herbarium. We also thank the anonymous reviewers for their constructive suggestions, which have greatly improved the manuscript. This work has been supported in part by CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Gastaldi.

Ethics declarations

Not applicable.

Human or Animal Studies

This article does not contain any studies with human or animal subjects.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Electronic supplementary material

Online Resource 1

Map showing the Río Negro and Chubut provinces in Argentine Patagonia. The numbers indicate wild populations of A. boronioides (1), A. australe (2), B. globosa (3), D. andina (4), D. multifida (5) and S. chilensis (6). (JPG 79 kb)

Online Resource 2

(DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gastaldi, B., Marino, G., Assef, Y. et al. Nutraceutical Properties of Herbal Infusions from Six Native Plants of Argentine Patagonia. Plant Foods Hum Nutr 73, 180–188 (2018). https://doi.org/10.1007/s11130-018-0680-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-018-0680-3

Keywords

Navigation