Skip to main content
Log in

Antihyperlipidemic Effect of Methanolic Extract from Opuntia joconostle Seeds in Mice Fed a Hypercholesterolemic Diet

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the hypolipidemic effect of a methanolic extract from Opuntia joconostle seeds fed to mice in a hypercholesterolemic diet. Acute toxicity of the methanolic extract was investigated by an established method. Phenolic composition and antioxidant activity were determined by high-performance liquid chromatography and DPPH, respectively. The total phenolic content of Opuntia joconostle seeds was 47.85 ± 1.29 mg gallic acid equivalents/g dry weight. The main phenolic compounds were identified as quercetin, rutin, and cafeic acid. Percent inhibition of DPPH+ was 49.76 ± 0.49 %. The oral LD50 for the methanolic extract from the Opuntia joconostle seeds was >5,000 mg/kg BW. Mice fed a hypercholesterolemic diet for six days exhibited significantly (P ≤ 0.001) higher plasma lipid levels than mice fed a normal diet. Remarkably, supplementation with methanolic extract from Opuntia joconostle at doses of 1, 2, and 5 g/kg body weight significantly (P ≤ 0.001) prevented the increase in total cholesterol, low-density lipoprotein cholesterol, triglycerides level, and atherogenic index. Similar concentrations of the HDL cholesterol were observed in both treated and control groups. A significant dose-dependent reduction in lipid levels was noted for treated groups compared to the hypercholesterolemic group. We attribute this result to the seeds’ phenolic composition. This methanolic extract has potential to be included in short-term hypercholesterolemia treatment regimens as it exhibits hypolipidemic activity with no apparent toxic manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AI:

Atherogenic index

BW:

Body weight

DPPH+ :

2,2-diphenyl-1-picrylhydrazyl

DW:

Dry weight

GAE:

Gallic acid equivalents

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

LD50 :

Median lethal dose

ME:

Methanolic extract

TC:

Total cholesterol

TPC:

Total phenolic content

TG:

Triglycerides

References

  1. Ezzati M, Vander Hoorn S, Lawes CMM, Leach R, James WPT, Lopez AD, Rodgers A, Murray CJL (2005) Rethinking the “diseases of affluence” paradigm: Global patterns of nutritional risks in relation to economic development. PLoS Med 2(5):404–412

    Article  Google Scholar 

  2. Lakka H, Laaksonen D, Lakka T, Niskanen L, Kumpusalo E, Tuomilehto J, Salonen J (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288(21):2709–2716

    Article  Google Scholar 

  3. Fogari R, Zoppi A (2004) Effect of antihypertensive agents on quality of life in the elderly. Drugs Aging 21(6):377–393

    Article  CAS  Google Scholar 

  4. Guo H, Ling W, Wang Q, Liu C, Hu Y, Xia M, Feng X, Xia X (2007) Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum Nutr 62(1):1–6

    Article  CAS  Google Scholar 

  5. Osorio-Esquivel O, Ortiz-Moreno A, Álvarez VB, Dorantes-Álvarez L, Giusti MM (2011) Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Res Int 44(7):2160–2168

    Article  CAS  Google Scholar 

  6. Pimienta-Barrios E, Méndez-Moran L, Ramirez-Hernandez CB, García de Alba-García EJ, Domínguez-Arias MR (2008) Effect of xoconostle (Opuntia joconostle Web.) fruit consumption on glucose and seric lipids. Agrociencia 42:645–653. ISSN 1405-3195

  7. AOAC (2005) Official Methods of Analysis, vol 1. Washington, DC: Association of Official Analytical Chemists

  8. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  9. Garduno L, Salazar M, Salazar S, Morelos ME, Labarrios F, Tamariz J, Chamorro GA (1997) Hypolipidaemic activity of alpha-asarone in mice. J Ethnopharmacol 55(2):161–163

    Article  CAS  Google Scholar 

  10. Valcheva-Kuzmanova S, Kuzmanov K, Mihova V, Krasnaliev I, Borisova P, Belcheva A (2007) Antihyperlipidemic effect of Aronia melanocarpa fruit juice in rats fed a high-cholesterol diet. Plant Foods Hum Nutr 62(1):19–24

    Article  CAS  Google Scholar 

  11. Norma Oficial Mexicana Especificaciones NOM-062-ZOO-1999. Técnicas para la produccion, cuidado y uso de los animales de laboratorio. México

  12. OECD (2001) The OECD Guideline for testing of chemicals- Acute Oral Toxicity – Up-and-Down procedure No. 425. The Organisation for Economic Co-operation and Development, Paris pp 1–26

  13. Argüelles N, Sánchez-Sandoval E, Mendieta A, Villa-Tanaca L, Garduño-Siciliano L, Jiménez F, Cruz MC, Medina-Franco JL, Chamorro-Cevallos G, Tamariz J (2010) Design, synthesis, and docking of highly hypolipidemic agents: Schizosaccharomyces pombe as a new model for evaluating α-asarone-based HMG-CoA reductase inhibitors. Bioorg Med Chem 18 (12):4238–4248

    Google Scholar 

  14. Ennouri M, Evelyne B, Laurence M, Hamadi A (2005) Fatty acid composition and rheological behaviour of prickly pear seed oils. Food Chem 93(3):431–437

    Article  CAS  Google Scholar 

  15. Morales P, Ramírez-Moreno E, Sanchez-Mata MC, Carvalho AM, Ferreira ICFR (2012) Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in Mexico. Food Res Int 46(1):279–285

    Google Scholar 

  16. Reyes-Caudillo E, Tecante A, Valdivia-López A (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107(2):656–663

    Article  CAS  Google Scholar 

  17. Soong Y-Y, Barlow JP (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88(3):411–417

    Article  CAS  Google Scholar 

  18. Soares JR, Dinis TCP, Cunha AP, Almeida IM (1997) Antioxidant activities of some extracts of Thymus zygi. Free Radic Res 26:469–478

    Article  CAS  Google Scholar 

  19. Terpinc P, Polak T, Makuc D, Ulrih NP, Abramovic H (2012) The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil. Food Chem 131(2):580–589

    Article  CAS  Google Scholar 

  20. Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-Ngam L, Ratanachamnong P, Srisawat S, Pongrapeeporn KU (2008) The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. J Ethnopharmacol 116 (3):439–446

  21. Foufelle F, Ferre P (2002) New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: A role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 366(Pt 2):377–391. doi:10.1042/BJ20020430

    Article  CAS  Google Scholar 

  22. Shah PK, Kaul S, Nilsson J, Cercek B (2001) Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: An idea whose time for testing in coming, part I. Circulation 104(19):2376–2383

    Article  CAS  Google Scholar 

  23. Yadav M, Lavania A, Tomar R, Prasad GBKS, Jain S, Yadav H (2010) Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Appl Biochem Biotechnol 160(8):2388–2400

    Article  CAS  Google Scholar 

  24. Eddouks M, Lemhadri A, Michel JB (2005) Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol 98(3):345–350

    Article  CAS  Google Scholar 

  25. Sudheesh S, Presannakumar G, Vijayakumar S, Vijayalakshmi NR (1997) Hypolipidemic effect of flavonoids from Solanum melongena. Plant Foods Hum Nutr 51(4):321–330

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly funded by Consejo Nacional de Ciencia y Tecnología (CONACyT) scholarship no. 174690, Secretaria de Investigación y Posgrado-IPN Proyect Number 20100788, Comisión de Operación y Fomento de Actividades Académicas del IPN (COFAA-IPN), Universidad Autónoma del Estado de México and The Ohio State University, Food Industries Center. We thank M.S. Maria Elena Pahua-Ramos for support in the hypercholesterolemic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Ortiz-Moreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

(DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osorio-Esquivel, O., Ortiz-Moreno, A., Garduño-Siciliano, L. et al. Antihyperlipidemic Effect of Methanolic Extract from Opuntia joconostle Seeds in Mice Fed a Hypercholesterolemic Diet. Plant Foods Hum Nutr 67, 365–370 (2012). https://doi.org/10.1007/s11130-012-0320-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-012-0320-2

Keywords

Navigation