Skip to main content

Advertisement

Log in

Screening of Dried Plant Seed Extracts for Adiponectin Production Activity and Tumor Necrosis Factor-Alpha Inhibitory Activity on 3T3-L1 Adipocytes

  • ORIGINAL PAPER
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

To search for dried plant seeds with potent anti-diabetes activity, we conducted a large scale screening for inhibitory activity on tumor necrosis factor-alpha and facilitating activity on adiponectin production in vitro. These activities in 3T3-L1 adipocytes were screened from ethanol extracts of 20 kinds of dried plant seed marketed in Japan. komatsuna (Brassica rapa var. perviridis), common bean (Phaseolus vulgaris L.), qing geng cai (Brassica rapa var. chinensis), green soybean (Glycine max), spinach (Spinacia oleracea L.) and sugar snap pea (Pisum sativum L.) markedly enhanced adiponectin production (11.3 ~ 12.7 ng/ml) but Japanese radish (Raphanus sativus), edible burdock (Arctium lappa L.), bitter melon (Momordica charantia) and broccoli (Brassica oleracea var. italica) did not (0.9 ~ 2.7 ng/ml). All adiponectin-production-enhancing seeds except spinach (2.7 pg/ml) and okra (Abelmoschus esculentus) (6.6 pg/ml) effectively decreased tumor necrosis factor-alpha levels (0.0 pg/ml). We further examined the effects on free radical scavenging activities in the dried seed extracts. Although scavenging activity correlated well with total phenolic content of samples, no correlation was observed with adiponectin production. These results point to the potential of dried seed extracts as a means to modify the activity of tumor necrosis factor-alpha for the adiponectin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADM:

Adipocyte differentiation medium

AMM:

Adipocyte maintenance medium

DMEM:

Dulbecco’s modified Eagle’s medium

DPPH:

2,2-diphenyl-1-picrylhydrazyl

PM:

Preadipocyte medium

PSEE:

Dried plant seed ethanol extracts

TNF α :

Tumor necrosis factor-alpha

References

  1. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451

    Article  CAS  Google Scholar 

  2. Cawthorn WP, Sethi JK (2008) TNF-α and adipocyte biology. FEBS Lett 582:117–131

    Article  CAS  Google Scholar 

  3. Lyon CJ, Law RE, Hsueh WA (2003) Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 144:2195–2200

    Article  CAS  Google Scholar 

  4. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    Article  CAS  Google Scholar 

  5. Kar P, Laight D, Rooprai HK, Shaw KM, Cummings M (2009) Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 26:526–531

    Article  CAS  Google Scholar 

  6. Holvoet P (2008) Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh K Acad Geneeskd Belg 70:193–219

    CAS  Google Scholar 

  7. Kowluru RA, Chan PS (2007) Oxidative stress and diabetic retinopathy. Exp Diab Res 2007:43603

    Google Scholar 

  8. Patel SR, Mailloux LM, Coppola JT, Mindrescu C, Staniloae CS (2008) Pioglitazone increases adiponectin levels in nondiabetic patients with coronary artery disease. Coron Artery Dis 19:349–353

    Google Scholar 

  9. Cao Y, Tao L, Yuan Y, Jiao X, Lau WB, Wang Y, Christopher T, Lopez B, Chan L, Goldstein B, Ma XL (2009) Endothelial dysfunction in adiponectin deficiency and its mechanisms involved. J Mol Cell Cardiol 46:413–419

    Article  CAS  Google Scholar 

  10. Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, Rajala MW, Du X, Rollman B, Li W, Hawkins M, Barzilai N, Rhodes CJ, Fantus IG, Brownlee M, Scherer PE (2005) The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem 280:4617–4626

    Article  CAS  Google Scholar 

  11. Tanaka K, Nishizono S, Makino N, Shizuka Tamaru S, Terai O, Ikeda I (2008) Hypoglycemic activity of Eriobotrya japonica seeds in type 2 diabetic rats and mice. Biosci Biotechnol Biochem 72:686–693

    Article  CAS  Google Scholar 

  12. Waheed A, Miana GA, Ahmad SI (2006) Clinical investigation of hypoglycemic effect of seeds of Azadirachta-indica in type-2 (NIDDM) diabetes mellitus. Pak J Pharm Sci 19:322–325

    Google Scholar 

  13. Niwano Y, Beppu F, Shimada T, Kyan R, Yasura K, Tamaki M, Nishino M, Midorikawa Y, Hamada H (2008) Extensive screening for plant foodstuffs in Okinawa, Japan with anti-obese activity on adipocytes in vitro. Plant Foods Hum Nutr 64:6–10

    Article  Google Scholar 

  14. Swain T, Hills WE (1959) The phenolic constituents of Prunus domestica L.: the quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–81

    Article  CAS  Google Scholar 

  15. Aparicio-Fernandez X, Reynoso-Camacho R, Castano-Tostado E, Garcia-Gasca T, Gonzalez de Mejia E, Guzman-Maldonado SH, Elizondo G, Yousef GG, Lila MA, Loarca-Pina G (2008) Antiradical capacity and induction of apoptosis on HeLa cells by a Phaseolus vulgaris extract. Plant Foods Hum Nutr 63:35–40

    Article  Google Scholar 

  16. Negro C (2003) Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol 87:41–44

    Article  CAS  Google Scholar 

  17. Okada Y, Okada M (2007) Effects of the radical-scavenger protein from broad beans on glutathione status in human lung fibroblasts. Environ Health Prev Med 12:272–277

    Article  CAS  Google Scholar 

  18. Okada M, Okada Y (2007) Effects of ethanolic extracts from broad beans on cellular growth and antioxidant enzyme activity. Environ Health Prev Med 12:251–257

    Article  Google Scholar 

  19. Oomah BD, Tiger N, Olson M, Balasubramanian P (2006) Phenolics and antioxidative activities in narrow-leafed lupins (Lupinus angustifolius L.). Plant Foods Hum Nutr 61:91–97

    Article  CAS  Google Scholar 

  20. Yokota J, Takuma D, Hamada A, Onogawa M, Yoshioka S, Kusunose M, Miyamura M, Kyotani S, Nishioka Y (2006) Scavenging of reactive oxygen species by Eriobotrya japonica seed. Biol Pharm Bull 29:467–471

    Article  CAS  Google Scholar 

  21. Chon S-U, Heo B-G, Park Y-S, Kim D-K, Gorinstein S (2009) Total phenolics level, antioxidant activities and cytotoxicity of young sprouts of some traditional Korean salad plants. Plant Foods Hum Nutr 64:25–31

    Article  CAS  Google Scholar 

  22. Liolios CC, Sotiroudis GT, Chinou I (2009) Fatty acids, sterols, phenols and antioxidant activity of Phoenix theophrasti fruits growing in Crete, Greece. Plant Foods Hum Nutr 64:52–61

    Article  CAS  Google Scholar 

  23. Zhang H, Matsuda H, Yamashita C, Nakamura S, Yoshikawa M (2009) Hydrangeic acid from the processed leaves of Hydrangea macrophylla var. thunbergii as a new type of anti-diabetic compound. Eur J Pharmacol 606:255–261

    Article  CAS  Google Scholar 

  24. Lam SH, Chen JM, Kang CJ, Chen CH, Lee SS (2008) alpha-Glucosidase inhibitors from the seeds of Syagrus romanzoffiana. Phytochemistry 69:1173–1178

    Article  CAS  Google Scholar 

  25. Duarte N, Kayser O, Abreu P, Ferreira MJ (2008) Antileishmanial activity of piceatannol isolated from Euphorbia lagascae seeds. Phytother Res 22:455–457

    Article  CAS  Google Scholar 

  26. Terra X, Montagut G, Bustos M, Llopiz N, Ardevol A, Blade C, Fernandez-Larrea J, Pujadas G, Salvado J, Arola L, Blay M (2009) Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 20:210–218

    Article  CAS  Google Scholar 

  27. Nanji AA, Zakim D, Rahemtulla A, Daly T, Miao L, Zhao S, Khwaja S, Tahan SR, Dannenberg AJ (1997) Dietary saturated fatty acids down-regulate cyclooxygenase-2 and tumor necrosis factor alpha and reverse fibrosis in alcohol-induced liver disease in the rat. Hepatology 26:1538–1545

    Article  CAS  Google Scholar 

  28. Isa Y, Miyakawa Y, Yanagisawa M, Goto T, Kang MS, Kawada T, Morimitsu Y, Kubota K, Tsuda T (2008) 6-Shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-alpha mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochem Biophys Res Commun 373:429–434

    Article  CAS  Google Scholar 

  29. Yoshida H, Takamura N, Shuto T, Ogata K, Tokunaga J, Kawai K, Kai H (2010) The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem Biophys Res Commun 394:728–732

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by Grants-in-Aid for Scientific Research from the President of the School of Nursing & Health, Aichi Prefectural University (to Y. Okada). We thank Ms. Wanda Miyata for help with critical review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, Y., Okada, M. & Sagesaka, Y. Screening of Dried Plant Seed Extracts for Adiponectin Production Activity and Tumor Necrosis Factor-Alpha Inhibitory Activity on 3T3-L1 Adipocytes. Plant Foods Hum Nutr 65, 225–232 (2010). https://doi.org/10.1007/s11130-010-0184-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-010-0184-2

Keywords

Navigation