Skip to main content
Log in

Variation in Amylase Activities in Radish (Raphanus sativus) Cultivars

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The radish (Raphanus sativus) is a root vegetable of the Brassicaceae family which shows amylolytic activity in the taproot. However, there is little information about differences in these amylolytic activities among radish cultivars. We analyzed the amylase activities and starch contents of 7 kinds of radish cultivars. The Koshin cultivar showed the highest amylase activity, with a level approximately 6 times higher than that of the Sobutori cultivar, which had the lowest. Cultivars with higher amylase activities showed higher starch contents. These results suggest that there are intraspecies variations in amylolytic activities in radishes, and positive correlations between amylase activity and starch content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DNSA:

3,5-dinitrosalicylic acid

IgG:

immunoglobulin G

RsBAMY1:

Raphanus sativus β-amylase 1

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033S

    CAS  Google Scholar 

  2. Khanum F, Siddalinga Swamy M, Sudarshana Krishna KR, Santhanam K, Viswanathan KR (2000) Dietary fiber content of commonly fresh and cooked vegetables consumed in India. Plant Foods Hum Nutr 55:207–218

    Article  CAS  Google Scholar 

  3. Ben Salah-Abbès J, Abbès S, Houas Z, Abdel-Wahhab MA, Oueslati R (2008) Zearalenone induces immunotoxicity in mice: possible protective effects of radish extract (Raphanus sativus). J Pharm Pharmacol 60:761–770

    Article  Google Scholar 

  4. Chaturvedi P (2008) Inhibitory response of Raphanus sativus on lipid peroxidation in albino rats. Evid Based Complement Alternat Med 5:55–59

    Article  CAS  Google Scholar 

  5. Barillari J, Cervellati R, Paolini M, Tatibouët A, Rollin P, Iori R (2005) Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (Kaiware Daikon) and its redox properties. J Agric Food Chem 53:9890–9896

    Article  CAS  Google Scholar 

  6. Ippoushi K, Takeuchi A, Ito H, Horie H, Azuma K (2007) Antioxidative effects of daikon sprout (Raphanus sativus L.) and ginger (Zingiber officinale Roscoe) in rats. Food Chem 102:237–242

    Article  CAS  Google Scholar 

  7. Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Grazia Fumo M, Pedulli GF, Valgimigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. J Agric Food Chem 56:875–883

    Article  CAS  Google Scholar 

  8. Hanlon PR, Webber DM, Barnes DM (2007) Aqueous extract from Spanish black radish (Raphanus sativus L. Var. niger) induces detoxification enzymes in the HepG2 human hepatoma cell line. J Agric Food Chem 55:6439–6446

    Article  CAS  Google Scholar 

  9. Suh SJ, Moon SK, Kim CH (2006) Raphanus sativus and its isothiocyanates inhibit vascular smooth muscle cells proliferation and induce G1 cell cycle arrest. Int Immunopharmacol 6:854–861

    Article  CAS  Google Scholar 

  10. Hara M, Sawada T, Ito A, Ito F, Kuboi T (2009) A major β-amylase expressed in radish taproots. Food Chem 114:523–528

    Article  CAS  Google Scholar 

  11. Hara M, Oki K, Hoshino K, Kuboi T (2003) Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl. Plant Sci 164:259–265

    Article  CAS  Google Scholar 

  12. Wang J, Zhang G, Chen J, Shen Q, Wu F (2003) Genotypic and environmental variation in barley beta-amylase activity and its relation to protein content. Food Chem 83:163–165

    Article  CAS  Google Scholar 

  13. Saika H, Nakazono M, Ikeda A, Yamaguchi J, Masaki S, Kanekatsu M, Nemoto K (2005) A transposon-induced spontaneous mutation results in low β-amylase content in rice. Plant Sci 169:239–244

    Article  CAS  Google Scholar 

  14. Adams CA, Broman TH, Rinne RW (1981) Starch metabolism in developing and germinating soya bean seeds is independent of ß-amylase activity. Ann Bot 48:433–440

    CAS  Google Scholar 

  15. Gana JA, Kalengamaliro NE, Cunningham SM, Volenec JJ (1998) Expression of beta-amylase from alfalfa taproots. Plant Physiol 118:1495–1506

    Article  CAS  Google Scholar 

  16. Nakamura Y, Nakamura K, Asai Y, Wada T, Tanaka K, Matsuo T, Okamoto S, Meijer J, Kitamura Y, Nishikawa A, Park EY, Sato K, Ohtsuki K (2008) Comparison of the glucosinolate-myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. J Agric Food Chem 56:2702–2707

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Hara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, M., Ito, F., Asai, T. et al. Variation in Amylase Activities in Radish (Raphanus sativus) Cultivars. Plant Foods Hum Nutr 64, 188–192 (2009). https://doi.org/10.1007/s11130-009-0129-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-009-0129-9

Keywords

Navigation