Skip to main content
Log in

Antioxidant Properties of Isolated Isorhamnetin from the Sea Buckthorn Marc

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

In the present study, the process of separation and purification of isohamnetin from marc of sea buckthorn was obtained. The antioxidant properties of the pure isolated isorhamnetin were evaluated by the scavenging of the diphenylpicrylhydrazyl radical (DPPH), iron (III) to iron (II)—reducing, and iron-chelating assays. High purity isorhamnetin (92.1%) was obtained and the results of antioxidant assays showed that isorhamnetin performed significantly compared with ascorbic acid and BHT, and the linear correlations were good in these assays. In conclusion, isorhamnetin may have potential as a natural antioxidant to alternate synthetic substances as food additive with its antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sasaki YF, Kawaguchi S, Kamaya A, Ohshita M, Kabasawa K, Iwama K, Taniguchi K, Tsuda S (2002) The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat Res 519:103–119

    CAS  Google Scholar 

  2. Duthie GG (1999) Parsley, polyphenols and nutritional antioxidants. Br J Nutr 81:425–426

    CAS  Google Scholar 

  3. Cotelle N (2001) Role of flavonoids in oxidative stress. Curr Top Med Chem 1:569–590. doi:10.2174/1568026013394750

    Article  CAS  Google Scholar 

  4. Kim DO, Lee CY (2004) Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr 44:253–273. doi:10.1080/10408690490464960

    Article  CAS  Google Scholar 

  5. Dilis V, Vasilopoulou E, Trichopoulou A (2007) The flavone, flavonol and flavan-3-ol content of the Greek traditional diet. Food Chem 105:812–821. doi:10.1016/j.foodchem.2007.01.069

    Article  CAS  Google Scholar 

  6. Justesen U, Knuthsen P (2001) Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem 73:245–250. doi:10.1016/S0308-8146(01)00114-5

    Article  CAS  Google Scholar 

  7. Zheng XY et al (2005) Chinese Pharmacopoeia. Chemical Industry, Beijing, pp 141–142

    Google Scholar 

  8. Chen C, Zhang H, Xiao W, Yong ZP, Bai N (2007) High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries. J Chromatogr A 1154:250–259. doi:10.1016/j.chroma.2007.03.097

    Article  CAS  Google Scholar 

  9. Gordana R, Gutzeit OH, Mqller JL (2005) Structurally related flavonoids with antioxidative properties differentially affect cell cycle progression and apoptosis of human acute leukemia cells. Nutr Res 25:141–153

    Google Scholar 

  10. Dufour C, Loonis M (2007) Flavonoids and their oxidation products protect efficiently albumin-bound linoleic acid in a model of plasma oxidation. Biochim Biophys Acta 1770:958–965

    CAS  Google Scholar 

  11. Starzynska AJ, Stodolak BZ, Jamroz M (2008) Antioxidant properties of extracts from fermented and cooked seeds of Polish cultivars of Lathyrus sativus. Food Chem 109:285–292. doi:10.1016/j.foodchem.2007.12.028

    Article  Google Scholar 

  12. Wangensteen H, Samuelsen AB, Malterud KE (2004) Antioxidant activity in extracts from coriander. Food Chem 88:293–297. doi:10.1016/j.foodchem.2004.01.047

    Article  CAS  Google Scholar 

  13. Zheng W, Wang S (2001) Antioxidant activity and phenolic composition in selected herbs. J Agric Food Chem 49:5165–5170. doi:10.1021/jf010697n

    Article  CAS  Google Scholar 

  14. Hinneburg I, Dorman HJD, Hiltunen R (2006) Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem 97:122–129. doi:10.1016/j.foodchem.2005.03.028

    Article  CAS  Google Scholar 

  15. Yang JX, Guo J, Yuan JF (2008) In vitro antioxidant properties of rutin. LWT 41:1060–1066. doi:10.1016/j.lwt.2007.06.010

    Article  CAS  Google Scholar 

  16. Carter P (1971) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40:450–458. doi:10.1016/0003-2697(71)90405-2

    Article  CAS  Google Scholar 

  17. Bao MH, Lou YJ (2006) Isorhamnetin prevent endothelial cell injuries from oxidized LDL via activation of p38MAPK. Eur J Pharm 547:22–30. doi:10.1016/j.ejphar.2006.07.021

    Article  CAS  Google Scholar 

  18. Yildirim A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 49:4083–4089. doi:10.1021/jf0103572

    Article  CAS  Google Scholar 

  19. Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214. doi:10.1016/S0166-2236(03)00067-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou Xianglin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pengfei, L., Tiansheng, D., Xianglin, H. et al. Antioxidant Properties of Isolated Isorhamnetin from the Sea Buckthorn Marc. Plant Foods Hum Nutr 64, 141–145 (2009). https://doi.org/10.1007/s11130-009-0116-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-009-0116-1

Keywords

Navigation