Skip to main content

Advertisement

Log in

Effect of Cultivar, Year Grown, and Cropping System on the Content of Tocopherols and Tocotrienols in Grains of Hulled and Hulless Barley

  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

In a three-year period (2000–2002) total tocols (tocopherols and tocotrienols), content of vitamin E and its isomers (α-, β+γ-, δ-tocopherols and tocotrienols) were assessed in grain of 13 barley genotypes. The highest content of tocols (60.3–67.6 mg kg−1) and content of vitamin E (Vitamin E equivalent—18.0–20.1 mg kg−1) were determined in the waxy varieties Wanubet, Wabet, and Washonubet. Standard varieties, i.e. of a malting type (Krona and Kompakt), had statistically significantly lower content of tocols (49.9 and 53.6 mg kg−1) and vitamin E (15.7–16.1 mg kg−1) compared to the waxy varieties. The hulless waxy variety Washonubet had statistically significantly higher total content of tocols (67.6 mg kg−1) and α- tocotrienols isomer (42.1 mg kg−1) versus all other genotypes in the set. Chemical treatment and fertilization statistically significantly increased the content of tocols (by 4.7 mg kg−1), vitamin E (by 1.9 mg kg−1), isomer α-tocopherol (by 0.9 mg kg−1) and isomer α- tocotrienols (by 3.3 mg kg−1). The average values of α-tocopherols and α-tocotrienols in the set were 6.7 mg kg−1 and 29.7 mg kg−1, respectively. Some of the reciprocal lines created by us from the malting and waxy varieties are suitable for food use for high contents of all tocopherols and α-tocotrienols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ko =:

Kompakt

Kr =:

Krona

T =:

Tocophefol

T3 =:

Tocotrienols

VEeq =:

Vitamin E equivalent

Wb =:

Wabet

Wnb =:

Wanubet

Wsnb =:

Washonubet

WTG =:

weight of a thousand grains

References

  1. Kerckhoffs DA, Brouns F, Hornstra G, Mensink RP (2002) Effect on the human lipoprotein profile of β-glucan, soy protein and isoflavones, plant sterols and stanols, garlic and tocotrienols. J Nutr 132: 2494–2505.

    CAS  Google Scholar 

  2. Hunt SM, Groff JL (1990) Advanced Nutrition and Human Metabolism. St. Paul, MN: West Publishing Company.

    Google Scholar 

  3. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hits WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotech 21: 1082–1087.

    Article  CAS  Google Scholar 

  4. Qureshi AA, Qureshi N, Hasler-Rapacz JO, Weber FE, Chaudhary V, Crenshaw TD, Gapro A, Ong ASH, Chong YH (1991) Dietary tocotrienols reduce concentrations of plasma cholesterol, apoliopoprotein B, thromboxane B, and platelet factor 4 in pigs with inherited hyperlipidemias. Am J Clin Nutr 53: 1042S–10426S.

    CAS  Google Scholar 

  5. Qureshi AA, Bradlow BA, Brace L, Manganello J, Peterson DM, Pearce BC, Wright JJ, Gapor A, Elson CE (1995) Response of hypercholesterolemic subjects to the administration of tocotrienol. Lipids 30: 1117–1119.

    Google Scholar 

  6. Watkins T, Lenz P, Gapor A, Struck M, Tomeo A, Bierenbarum M (1993) γ-tocotrienol as a hypocholesterolemic and antioxidant agent in rats fed atherogenic diets. Lipids 28: 1113–1118.

    CAS  Google Scholar 

  7. Qureshi AA, Burger WC, Peterson DM, Elson CE (1986) The structure of an inhibitor of cholesterol biosynthesis isolated from barley. J Biol Chem 261: 10544–10550.

    CAS  Google Scholar 

  8. Qureshi AA, Burger WC, Peterson DM, Elson CE (1985) Suppression of cholesterogenesis by plant constituents: Review of Wisconsin contributions to NC-167. Lipids 20: 817–824.

    CAS  Google Scholar 

  9. Wang LJ, Newman RK, Newman CW, Jackson LL, Hofer PJ (1993) Tocotrienol and fatty acid composition of barley oil and effects on lipid metabolism. Plant Foods for Hum Nutr 43: 9–17.

    Article  CAS  Google Scholar 

  10. Weber FE, Chaudhary VK, Lupton JR, Qureshi AA (1990) Therapeutic and physiological properties of barley bran. Cereal Foods World 35: 844–846.

    Google Scholar 

  11. Theriault A, Chao JT, Wang Q, Gapor A, Adeli K (1999) Tocotrienol: A review of its therapeutic potential. Clinical Biochem 32: 309–319.

    Article  CAS  Google Scholar 

  12. EN 12 822:2000, Foodstuffs – Determination of vitamin E by high performance liquid chromatography–Measurement of α-, β-, γ-, and δ- tocopherols, European committee for standardization, B-1050 Brussels, February 2000.

  13. McLaughlin PJ, Weihrauch JL (1979) Vitamin E content of foods. J Am Dietet Assoc 75: 647–651.

    CAS  Google Scholar 

  14. Peterson DM, Qureshi AA (1993) Genotype and environment effects of tocols of barley and oats. Cereal Chem 70: 157–162.

    Article  CAS  Google Scholar 

  15. Bhatty RS (1999) The potential of hulless barley. Cereal Chem 76: 589–599.

    CAS  Google Scholar 

  16. Peterson DN (1994) Barley tocols: Effects of milling, malting and mashing. Cereal Chem 71: 42–44.

    CAS  Google Scholar 

  17. Cavalero A, Gianinetti A, Finocchiaro F, Delogu G, Stanca AM (2004) Tocols in hull-less and hulled barley genotypes grown in contrasting environments. J Cereal Sci 39: 175–180.

    Article  Google Scholar 

  18. Vaculova K, Ehrenbergerova J, Nemejc R.V, Pryma J (2001) The variability and correlations between the content of vitamin E and its isomers in hybrids of the F2 generation of spring barley. Acta Univ. agric. et silvic. Mendel. Brun. XLIX 1, 1–9.

    Google Scholar 

  19. Goupy P, Hugues M, Boivin JP, Amiot MJ (1999) Antioxidant Compounds and Activity of Barley (Hordeum vulgare) and Malt Extracts. Cannes: EBC Congress, pp 445–451.

    Google Scholar 

  20. Holasova M, Velisek J, Davidek J (1995) Tocopherol and tocotrienol contents in cereal grains. Potravinarske Vedy 13: 409–417.

    CAS  Google Scholar 

  21. Cavallero A, Viva M, Stanca AM (2000) Improvement of spaghetti and bread with β-glucan and tocols from naked barley. In: Barley Genetics VIII, Proceedings of the VIII International Barley Genetics Symposium. Adelaide Australia, pp 282–1087.

  22. Holasova M, Velisek J, Davidek J (1998) Cereal grains-the source of tocopherols and tocotrienols. In: Proceedings, International Conference of Cereal for Human Health and Preventive Nutrition, Brno Czech Rep, pp 185–187.

  23. Colombo ML, Corsini A, Cattivelli L, Arlandi E, Remo F, Paoletti R., Pank F (1996) Breeding research on medicinal plants. In: Proceedings of the International Symposium Beiträge zur Züchtungsforschung Bundesanstalt fur Züchtungsforschung und Kulturpflazen. Quedlinburg Germany pp. 393–395.

Download references

Acknowledgements

The authors acknowledge financial support by the Ministry of Educations, Youth and Sports of the Czech Republic, Project RC No. 1M0570 and by the Grant Agency of the Czech Republic, Project No. 525/05/0781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ehrenbergerová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrenbergerová, J., Belcrediová, N., Prýma, J. et al. Effect of Cultivar, Year Grown, and Cropping System on the Content of Tocopherols and Tocotrienols in Grains of Hulled and Hulless Barley. Plant Foods Hum Nutr 61, 145–150 (2006). https://doi.org/10.1007/s11130-006-0024-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-006-0024-6

Key words:

Navigation