Skip to main content
Log in

Mechanical squeezing and entanglement in coupled optomechanical system with modulated optical parametric amplifier

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study theoretically the generation of mechanical squeezing and optomechanical entanglement in a double-cavity optomechanical system involving a modulated optical parametric amplifier (OPA). Owing to the cooperation of the modulated OPA and the auxiliary cavity, the mechanical squeezing can be realized in both the resolved-sideband and unresolved-sideband regimes. Particularly, the strong mechanical squeezing can be generated in the resolved-sideband regime with the assistance of the modulated OPA. Moreover, under the joint effect of the auxiliary cavity and the modulated OPA, the optomechanical entanglement can be greatly enhanced in the unresolved-sideband regime. It is noted that both the mechanical squeezing and optomechanical entanglement have strong robustness against the high dissipation of the cavity and thermal noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  2. Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    ADS  Google Scholar 

  3. Wang, Y.D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)

    ADS  Google Scholar 

  4. Chen, R.X., Shen, L.T., Yang, Z.B., Wu, H.Z., Zheng, S.B.: Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system. Phys. Rev. A 89, 023843 (2014)

    ADS  Google Scholar 

  5. Liao, J.Q., Law, C.K., Kuang, L.M., Nori, F.: Enhancement of mechanical effects of single photons in modulated two-mode optomechanics. Phys. Rev. A 92, 013822 (2015)

    ADS  Google Scholar 

  6. Li, J., Zhu, S.Y., Agarwal, G.S.: Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)

    ADS  Google Scholar 

  7. Zhang, J., Peng, K., Braunstein, S.L.: Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    ADS  Google Scholar 

  8. Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    ADS  Google Scholar 

  9. Liu, Y.C., Xiao, Y.F., Luan, X., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110, 153606 (2013)

    ADS  Google Scholar 

  10. Wilson, D.J., Sudhir, V., Piro, N., Schilling, R., Ghadimi, A., Kippenberg, T.J.: Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325 (2015)

    ADS  Google Scholar 

  11. Liao, J.Q., Law, C.K.: Parametric generation of quadrature squeezing of mirrors in cavity optomechanics. Phys. Rev. A 83, 033820 (2011)

    ADS  Google Scholar 

  12. Kronwald, A., Marquardt, F., Clerk, A.A.: Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A 88, 063833 (2013)

    ADS  Google Scholar 

  13. Agarwal, G.S., Huang, S.M.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    ADS  Google Scholar 

  14. He, Y.: Optomechanically induced transparency associated with steady-state entanglement. Phys. Rev. A 91, 013827 (2015)

    ADS  Google Scholar 

  15. Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)

    ADS  Google Scholar 

  16. Zheng, Q., Xu, J.W., Yao, Y., Li, Y.: Detecting macroscopic quantum coherence with a cavity optomechanical system. Phys. Rev. A 94, 052314 (2016)

    ADS  Google Scholar 

  17. Li, X., Nie, W., Chen, A., Lan, Y.: Macroscopic quantum coherence and mechanical squeezing of a graphene sheet. Phys. Rev. A 96, 063819 (2017)

    ADS  Google Scholar 

  18. Qiu, W.Y., Cheng, X.H., Chen, A.X., Lan, Y.H., Nie, W.J.: Controlling quantum coherence and entanglement in cavity magnomechanical systems. Phys. Rev. A 105, 063718 (2022)

    ADS  Google Scholar 

  19. Zhai, L.L., Guo, J.L.: Quantum coherence in a coupled optomechanical system with atomic ensemble. Phys. A 587, 126523 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36 (1991)

    Google Scholar 

  21. Peano, V., Schwefel, H.G.L., Marquardt, C., Marquardt, F.: Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification. Phys. Rev. Lett. 115, 243603 (2015)

    ADS  Google Scholar 

  22. Simon, R., Hartmann, M.J.: Quantum information processing with nanomechanical qubits. Phys. Rev. Lett. 110, 120503 (2013)

    Google Scholar 

  23. Stannigel, K., Komar, P., Habraken, S.J.M., Bennett, S.D., Lukin, M.D., Zoller, P., Rabl, P.: Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012)

    ADS  Google Scholar 

  24. Barzanjeh, Sh., Vitali, D., Tombesi, P., Milburn, G.J.: Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys. Rev. A 84, 042342 (2011)

    ADS  Google Scholar 

  25. Pirandola, S., Vitali, D., Tombesi, P., Lloyd, S.: Macroscopic entanglement by entanglement swapping. Phys. Rev. A 97, 150403 (2006)

    Google Scholar 

  26. Tan, H., Buchmann, L.F., Seok, H., Li, G.: Achieving steady-state entanglement of remote micromechanical oscillators by cascaded cavity coupling. Phys. Rev. A 87, 022318 (2013)

    ADS  Google Scholar 

  27. Liao, J.Q., Wu, Q.Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A 89, 014302 (2014)

    ADS  Google Scholar 

  28. Wand, M., LüX, Y., Wang, Y.D., You, J.Q., Wu, Y.: Macroscopic quantum entanglement in modulated optomechanics. Phys. Rev. A 94, 053807 (2016)

    ADS  Google Scholar 

  29. Li, J., Li, G., Zippilli, S., Vitali, D., Zhang, T.: Enhanced entanglement of two different mechanical resonators via coherent feedback. Phys. Rev. A 95, 043819 (2017)

    ADS  Google Scholar 

  30. Gu, W.J., Li, G.X., Yang, Y.P.: Generation of squeezed states in a movable mirror via dissipative optomechanical coupling. Phys. Rev. A 88, 013835 (2013)

    ADS  Google Scholar 

  31. Pirkkalainen, J.M., Damskägg, E., Brandt, M., Massel, F., Sillanpää, M.A.: Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015)

    ADS  Google Scholar 

  32. Liao, C.G., Xie, H., Shang, X., Chen, Z.H., Lin, X.M.: Enhancement of steady-state bosonic squeezing and entanglement in a dissipative optomechanical system. Opt. Express 26, 13783 (2018)

    ADS  Google Scholar 

  33. Guo, Y.J., Li, K., Nie, W.J., Li, Y.: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 90, 053841 (2014)

    ADS  Google Scholar 

  34. Chen, X., Liu, Y.C., Peng, P., Zhi, Y., Xiao, Y.F.: Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A 92, 033841 (2015)

    ADS  Google Scholar 

  35. Liu, Y.M., Bai, C.H., Wang, D.Y., Wang, T., Zheng, M.H., Wang, H.F., Zhu, A.D., Zhang, S.: Ground-state cooling of rotating mirror in double-laguerre-gaussian-cavity with atomic ensemble. Opt. Express 26, 6143 (2018)

    ADS  Google Scholar 

  36. Bai, C.H., Wang, D.Y., Zhang, S., Wang, H.F.: Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system. Sci. China-Phys. Mech. Astron. 62, 970311 (2019)

    ADS  Google Scholar 

  37. Zhang, R., Fang, Y., Wang, Y.Y., Chesi, S., Wang, Y.D.: Strong mechanical squeezing in an unresolved-sideband optomechanical system. Phys. Rev. A 99, 043805 (2019)

    ADS  Google Scholar 

  38. Han, X., Wang, D.Y., Bai, C.H., Cui, W.X., Zhang, S., Wang, H.F.: Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation. Phys. Rev. A 100, 033812 (2019)

    ADS  Google Scholar 

  39. Bai, C.H., Wang, D.Y., Zhang, S., Liu, S.T., Wang, H.F.: Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system. Ann. Phys. (Berlin) 7, 1800271 (2019)

    MathSciNet  Google Scholar 

  40. Wang, D.Y., Bai, C.H., Liu, S.T., Zhang, S., Wang, H.F.: Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Phys. Rev. A 98, 023816 (2018)

    ADS  Google Scholar 

  41. Bai, C.H., Wang, D.Y., Liu, S.T., Zhang, S., Wang, H.F.: Double-mechanical-oscillator cooling by breaking the restrictions of quantum backaction and frequency ratio via dynamical modulation. Phys. Rev. A 103, 033508 (2021)

    ADS  MathSciNet  Google Scholar 

  42. Zhang, W.J., Zhang, Y.C., Guo, Q., Liu, A.P., Li, G., Zhang, T.C.: Strong mechanical squeezing and optomechanical entanglement in a dissipative double-cavity system via pump modulation. Phys. Rev. A 104, 053506 (2021)

    ADS  Google Scholar 

  43. Lin, W., Liao, C.G.: Enhancement of asymmetric steering via interference effects induced by twofold modulations in a cavity optomechanical system. Eur. Phys. J. Plus 136, 324 (2021)

    Google Scholar 

  44. Wu, L.A., Kimble, H.J., Hall, J.L., Wu, H.: Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520 (1986)

    ADS  Google Scholar 

  45. Huang, S., Agarwal, G.S.: Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Phys. Rev. A 79, 013821 (2009)

    ADS  Google Scholar 

  46. Agarwal, G.S., Huang, S.: Strong mechanical squeezing and its detection. Phys. Rev. A 93, 043844 (2009)

    ADS  Google Scholar 

  47. LüX, Y., Wu, Y., Johansson, J.R., Jing, H., Zhang, J., Nori, F.: Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114, 093602 (2015)

    ADS  Google Scholar 

  48. Peano, V., Schwefel, H.G.L., Marquardt, Ch., Marquardt, F.: Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification. Phys. Rev. Lett. 115, 243603 (2015)

    ADS  Google Scholar 

  49. Hu, C.S., Lin, X.Y., Shen, L.T., Su, W.J., Jiang, Y.K., Wu, H.Z., Zheng, S.B.: Improving macroscopic entanglement with nonlocal mechanical squeezing. Opt. Express 28, 1492 (2020)

    ADS  Google Scholar 

  50. Hu, C.S., Yang, Z.B., Wu, H.Z., Li, Y., Zheng, S.B.: Twofold mechanical squeezing in a cavity optomechanical system. Phys. Rev. A 98, 023807 (2018)

    ADS  Google Scholar 

  51. Gardiner, C.W., Zoller, P.: Quantum Noise. Spring, Berlin (2000)

    MATH  Google Scholar 

  52. DeJesus, E.X., Kaufman, C.: Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288 (1987)

    ADS  MathSciNet  Google Scholar 

  53. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  54. Ludwig, M., Kubala, B., Marquardt, F.: The optomechanical instability in the quantum regime. New J. Phys. 10, 095013 (2008)

    ADS  Google Scholar 

  55. Woolley, M.J., Doherty, A.C., Milburn, G.J., Schwab, K.C.: Nanomechanical squeezing with detection via a microwave cavity. Phys. Rev. A 78, 062303 (2008)

    ADS  Google Scholar 

  56. Nunnenkamp, A., Børkje, K., Harris, J.G.E., Girvin, S.M.: Cooling and squeezing via quadratic optomechanical coupling. Phys. Rev. A 82, 021806 (2010)

    ADS  Google Scholar 

  57. Schmidt, M., Ludwig, M., Marquardt, F.: Optomechanical circuits for nanomechanical continuous variable quantum state processing. New J. Phys. 14, 125005 (2012)

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (Grant Nos. 11305114, 11304226, 11505126) and the Program for Innovative Research in University of Tianjin (Grant No.TD13-5077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Liang Guo.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Ll., Du, HJ. & Guo, JL. Mechanical squeezing and entanglement in coupled optomechanical system with modulated optical parametric amplifier. Quantum Inf Process 22, 211 (2023). https://doi.org/10.1007/s11128-023-03965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03965-8

Keywords

Navigation