Skip to main content
Log in

Quantum secure two-party Euclidean distance computation based on mutually unbiased bases

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secure multi-party geometry computation is a specific primitive of classical secure multi-party computation. Compared with classical secure multi-party geometry computation based on mathematical difficulty problems which have been potentially threatened due to the development of quantum computer technology, the quantum protocol can provide unconditional security for the geometry computation. A novel quantum protocol based on the mutually biased bases of d-level quantum system is constructed to perform secure two-party Euclidean distance computation. With the aid of a semi-honest third party, the proposed protocol can calculate the Euclidean distance between two secret n-dimensional coordinates held by the participants who do not trust each other. Not only can the protocol resist the attacks from both outside eavesdroppers and participants, but also from semi-honest third party who does not collude with any participant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations, In: Proc. of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164 (1982)

  2. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, In: Proc. of the Nineteenth Annual ACM Symposium on Theory of Computing , pp. 218–229 (1987)

  3. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation, In: Proc. of the 39th Annual ACM Symposium on Theory of Computing , pp. 10–20 (2007)

  4. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation, In: Proc. of the 40th Annual ACM Symposium on Theory of Computing , p. 413 (2008)

  5. Atallah, M.J., Du, W.: Secure multi-party computational geometry, In: the 7th International Workshop on Algorithms and Data Structures , pp. 165–179 (2001)

  6. Li, S.D., Wang, D.S., Dai, Y.Q.: Efficient secure multiparty computational geometry. Chin. J. Electron. 19(2), 324–328 (2010)

    Google Scholar 

  7. Li, S.D., Wu, C.Y., Wang, D.S., Dai, Y.Q.: Secure multiparty computation of solid geometric problems and their applications. Inf. Sci. 282, 401–413 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z.H., Li, S.D., Huang, Q., Ding, Y., Sun, M.: Privacy-preserving determination of spatial location-relation in cloud computing. Chin. J. Comput. 40(2), 351–363 (2017)

    MathSciNet  Google Scholar 

  9. Li, S.D., Dai, Y.Q.: Secure two-party computational geometry. J. Comput. Technol. 20(2), 258–263 (2005)

    Article  MathSciNet  Google Scholar 

  10. Yang, B., Sun, A.D., Zhang, W.Z.: Secure two-party protocols on planar circles. J. Inform. 8(1), 29–40 (2011)

    Google Scholar 

  11. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring, In: Proc. of 35th Annual Symposium on the Foundations of Computer Science (Los Alamitos, CA), pp. 124–134 (1994)

  12. Grover, L.K.: A fast quantum mechanical algorithm for database search, In: Proc. of the 28 Annual ACM Symposium On Theory Of Computing , pp. 212–219 (1996)

  13. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing, In: Proc. of IEEE International Conference on Computers (Bangalore, Indian), pp. 175–179 (1984)

  14. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)

    Article  ADS  Google Scholar 

  16. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 62(7), 070301 (2019)

    Article  Google Scholar 

  17. Wei, C.Y., Cai, X.Q., Wang, T.Y., Qin, S.J., Gao, F., Wen, Q.Y.: Error tolerance bound in QKD-based quantum private query. IEEE J. Sel. Areas Commun. 38(3), 517–527 (2020)

    Article  Google Scholar 

  18. Peng, Z.W., Shi, R.H., Zhong, H., Cui, J., Zhang, S.: A novel quantum scheme for secure two-party distance computation. Quantum Inf. Process. 16(12), 316 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Peng, Z.W., Shi, R.H., Wang, P.H., Zhang, S.: A novel quantum solution to secure two-party distance computation. Quantum Inf. Process. 17(6), 145 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Durt, T., Englert, B.G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inform. 8(4), 535–640 (2010)

    Article  Google Scholar 

  21. Ivanovic, I.D.: Geometrical description of quantal state determination. J. Phys. A: Math. Gen. 14(12), 3241 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  22. Yang, Y.G., Xia, J., Jia, X., Hua, Z.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Li, C.Y., Zhou, H., Wang, Y., Deng, F.G.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  24. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inform. Comput. 7(4), 329–334 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the RFDP of Henan Polytechnic University (Grant: B2013-054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhong Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y. Quantum secure two-party Euclidean distance computation based on mutually unbiased bases. Quantum Inf Process 21, 262 (2022). https://doi.org/10.1007/s11128-022-03611-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03611-9

Keywords

Navigation