Skip to main content
Log in

Faster search of clustered marked states with lackadaisical quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The nature of discrete-time quantum walks in the presence of multiple marked states can be found in the literature. An exceptional configuration of clustered marked states, which is a variant of multiple marked states, may be defined as a cluster of k marked states arranged in a \(\sqrt{k} \times \sqrt{k}\) array within a \(\sqrt{N} \times \sqrt{N}\) grid, where \(k=n^{2}\) and n an odd integer. In this article, we establish through numerical simulation that for lackadaisical quantum walks, which is the analogue of a three-state discrete-time quantum walks on a line, the success probability to find a vertex in the marked region of this exceptional configuration is nearly 1 with smaller run-time. We also show that the weights of the self-loop suggested for multiple marked states in the state-of-the-art works are not optimal for this exceptional configuration of clustered marked states. We propose a weight of the self-loop which gives the desired result for this configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 50–59. Association for Computing Machinery, New York, NY, USA (2001). https://doi.org/10.1145/380752.380758

  2. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993). https://doi.org/10.1103/PhysRevA.48.1687

    Article  ADS  Google Scholar 

  3. Ambainis, A.: Quantum walk algorithm for element distinctness. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 22–31 (2004). https://doi.org/10.1109/FOCS.2004.54

  4. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1 (2004). https://doi.org/10.1142/S0219749903000383

  5. Ambainis, A., Backurs, A., Nahimovs, N., Ozols, R., Rivosh, A.: Search by quantum walks on two-dimensional grid without amplitude amplification. In: TQC, vol. 7582 (2011). https://doi.org/10.1007/978-3-642-35656-8_7

  6. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’05, pp. 1099–1108. Society for Industrial and Applied Mathematics, USA (2005)

  7. Ambainis, A., Rivosh, A.: Quantum walks with multiple or moving marked locations. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008: Theory and Practice of Computer Science, pp. 485–496. Springer, Berlin (2008)

    Chapter  Google Scholar 

  8. Benioff, P.: Space searches with a quantum robot (2000). https://doi.org/10.1090/conm/305/05212

  9. de Carvalho, J.H.A., de Souza, L.S., Neto, F.M.d.P., Ferreira, T.A.E.: On applying the lackadaisical quantum walk algorithm to search for multiple solutions on grids (2021). https://doi.org/10.48550/ARXIV.2106.06274

  10. Childs, A.M.: On the relationship between continuous-and discrete-time quantum walk. Commun. Math. Phys. 294(2), 581–603 (2009). https://doi.org/10.1007/s00220-009-0930-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing-STOC’03 (2003). https://doi.org/10.1145/780542.780552

  12. Childs, A.M., Goldstone, J.: Spatial search and the Dirac equation. Phys. Rev. A 70(4), 042312 (2004). https://doi.org/10.1103/physreva.70.042312

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Giri, P.R., Korepin, V.: Lackadaisical quantum walk for spatial search. Mod. Phys. Lett. A 35(08), 2050043 (2019). https://doi.org/10.1142/s0217732320500431

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC’96, pp. 212–219. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237814.237866

  15. Høyer, P., Yu, Z.: Analysis of lackadaisical quantum walks. Quantum Inf. Comput. 20, 1137–1152 (2020)

    MathSciNet  Google Scholar 

  16. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003). https://doi.org/10.1080/00107151031000110776

    Article  ADS  Google Scholar 

  17. Kendon, V.M.: A random walk approach to quantum algorithms. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 364(1849), 3407–3422 (2006). https://doi.org/10.1098/rsta.2006.1901

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007). https://doi.org/10.1137/050643684

    Article  MathSciNet  MATH  Google Scholar 

  19. Nahimovs, N.: Lackadaisical quantum walks with multiple marked vertices. In: SOFSEM (2019)

  20. Nahimovs, N., Rivosh, A.: Exceptional configurations of quantum walks with Grover’s coin. In: Kofroň, J., Vojnar, T. (eds.) Mathematical and Engineering Methods in Computer Science, pp. 79–92. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  21. Nahimovs, N., Rivosh, A.: Quantum walks on two-dimensional grids with multiple marked locations. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016: Theory and Practice of Computer Science, pp. 381–391. Springer, Berlin (2016)

    Chapter  Google Scholar 

  22. Nahimovs, N., Santos, R.A.M.: Lackadaisical quantum walks on 2d grids with multiple marked vertices. J. Phys. A: Math. Theor. 54(41), 415301 (2021). https://doi.org/10.1088/1751-8121/ac21e3

    Article  MathSciNet  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press (2010). https://doi.org/10.1017/CBO9780511976667

  24. Rhodes, M.L., Wong, T.G.: Search by lackadaisical quantum walks with nonhomogeneous weights. Phys. Rev. A 100(4), 042303 (2019). https://doi.org/10.1103/physreva.100.042303

    Article  ADS  Google Scholar 

  25. Rhodes, M.L., Wong, T.G.: Search on vertex-transitive graphs by lackadaisical quantum walk. Quantum Inf. Process. 19, 1–16 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Search of clustered marked states with lackadaisical quantum walks (2018). arXiv:1804.01446

  27. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003). https://doi.org/10.1103/physreva.67.052307

    Article  ADS  Google Scholar 

  28. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5, 83 (2003). https://doi.org/10.1088/1367-2630/5/1/383

    Article  ADS  Google Scholar 

  29. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012). https://doi.org/10.1007/s11128-012-0432-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, H., Zhou, J., Wu, J., Yi, X.: Adjustable self-loop on discrete-time quantum walk and its application in spatial search (2017). arXiv:1707.00601

  31. Wang, K., Wu, N., Xu, P., Song, F.: One-dimensional lackadaisical quantum walks. J. Phys. A: Math. Theor. 50(50), 505303 (2017). https://doi.org/10.1088/1751-8121/aa9235

    Article  MathSciNet  MATH  Google Scholar 

  32. Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A: Math. Theor. 48(43), 435304 (2015). https://doi.org/10.1088/1751-8113/48/43/435304

    Article  MathSciNet  MATH  Google Scholar 

  33. Wong, T.G.: Spatial search by continuous-time quantum walk with multiple marked vertices. Quantum Inf. Process. 15(4), 1411–1443 (2016). https://doi.org/10.1007/s11128-015-1239-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Process. 17(3), 052307 (2018). https://doi.org/10.1007/s11128-018-1840-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges fruitful discussion regarding quantum walks with Prof. Andris Ambainis, University of Latvia. The first author is also thankful to Dr. Alexander Rivosh, Dr. Nikolajs Nahimovs and Dr. Raqueline Azevedo Medeiros Santos for the discussion on exceptional configurations of quantum walks. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Majumdar, R., Saha, D. et al. Faster search of clustered marked states with lackadaisical quantum walks. Quantum Inf Process 21, 275 (2022). https://doi.org/10.1007/s11128-022-03606-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03606-6

Keywords

Navigation