Skip to main content
Log in

New quantum codes derived from images of cyclic codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Let q be a prime power and \(m \ge 2\) be a positive integer. Based on classical cyclic codes, we construct new quantum codes by using images of cyclic codes. Three classes of quantum codes are derived from the \({\mathbb {F}}_{q^2}\) images of cyclic codes over \({\mathbb {F}}_{q^{2m}}\). Compared with the known ones, these new quantum codes have larger minimum distance or higher code rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995)

    Article  ADS  Google Scholar 

  2. Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. London A 452(1), 2552–2577 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Calderbank, A.R., Rainds, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1389 (1998)

    Article  MathSciNet  Google Scholar 

  5. Feng, K.Q., Chen, H.: Quantum Error-Correcting Codes. Science Press, Beijing (2010)

    Google Scholar 

  6. Ashikhmin, A.R., Knill, E.: Nonbinary quantum stablizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  Google Scholar 

  7. La Guardia, G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331 (2009)

    Article  ADS  Google Scholar 

  8. Christensen, R.B., Geil, O.: On steane-enlargement of quantum codes from Cartesian product point sets. Quantum Inf. Process. 19(7), 192 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Li, R.H., Wang, J.L., Liu, Y., Guo, G.M.: New quantum constacyclic codes. Quantum Inf. Process. 18(5), 127 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kai, X.S., Zhu, S.X., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  Google Scholar 

  11. Zhu, S.X., Jiang, W., Chen, X.J.: New entanglement-assisted quantum MDS codes with length \((q^2+1)/5\). Quantum Inf. Process 19(7), 211 (2020)

    Article  ADS  Google Scholar 

  12. Chen, X.J., Zhu, S.X., Jiang, W., Pang, B.B.: Four classes of new entanglement-assisted quantum optimal codes. J. Appl. Math. Comput. (2021). https://doi.org/10.1007/s12190-021-01523-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Va Guardia, G.G.: Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes. Quantum Inf. Process. 11(2), 591–604 (2012)

    Article  MathSciNet  Google Scholar 

  14. Luo, G.J., Cao, X.W.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18(89), 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: Primitive quantum BCH codes over finite fields. IEEE Int. Symp. Inf. Theory, arXiv:1810.07004 (2006)

  16. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Int. Symp. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  17. Wang, J.L., Li, R.H., Lv, J.J., Song, H.: Entanglement-assisted quantum codes from cyclic codes and negacyclic codes. Quantum Inf. Process. 19(5), 138 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Thangaraj, A., McLaughin, S.W.: Quantum codes from cyclic codes over \(GF(4^m)\). IEEE Trans. Inf. Theory 47(3), 1176–1178 (2001)

    Article  Google Scholar 

  19. Seguin, G.E.: The \(q\)-ary image of a \(q^m\)-ary cyclic code. IEEE Trans. Inf. Theory 41(2), 387–399 (1995)

    Article  Google Scholar 

  20. Sundeep, B., Thangaraj, A.: Self-orthogonality of \(q\)-ary images of \(q^m\)-ary codes and quantum code construction. IEEE Trans. Inf. Theory 53(7), 2480–2489 (2007)

    Article  Google Scholar 

  21. Kai, X.S., Zhu, S.X., Sun, Z.H.: The images of constacyclic codes and new quantum codes. Quantum Inf. Process. 19(7), 212 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  23. Wan, Z.X.: Lectures on Finite Fields and Galois Rings. World Scientific, Singapore (2003)

    Book  Google Scholar 

  24. Edel, Y.: Some good quantum twisted codes. https://www.mathi.uniheidelberg.de/yves/Matritzen/QTBCH/QTBCHIndex.html (2020)

  25. Feng, K.Q., Ling, S., Xing, C.P.: Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 52(3), 986–991 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 61772168, 61972126, 12001002, 62002093) and the Natural Science Foundation of Anhui Province (No. 2008085QA04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhe Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Natural Science Foundation of China (Nos. 61772168, 61972126, 12001002, 62002093) and the Natural Science Foundation of Anhui Province (No.2008085QA04)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Guo, H., Kai, X. et al. New quantum codes derived from images of cyclic codes. Quantum Inf Process 21, 254 (2022). https://doi.org/10.1007/s11128-022-03603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03603-9

Keywords

Navigation