Skip to main content
Log in

Ternary quantum public-key cryptography based on qubit rotation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum public-key cryptography (QPKC) can perform the management and distribution of keys in a large-scale quantum communication network, thus being the foundation for many cryptographic applications. The QPKC system, which uses qubit rotation as a quantum one-way function, is one of the most practical public key systems and has found many valuable extensions. In this paper, we analyze and provide supplementary properties of binary qubit rotation. On the basis of Nikolopoulos’work (Phys Rev A 77(3):032348, 2008), we have extended the qubit rotation to three dimensions and propose a ternary QPKC protocol. The protocol can resist forward search attack and achieve higher security than binary QPKC protocol. Theoretically, the protocol can be extended to a higher dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article.

References

  1. Nikolopoulos, G.M.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A 77(3), 032348 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. Xu, G., Chen, X.B., Dou, Z., Yang, Y.X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959–2980 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. Yang, L.: Quantum public-key cryptosystem based on classical NP-complete problem. arXiv preprint arXiv:quant-ph/0310076 (2003)

  4. Yang, L., Liang, M., Li, B., Hu, L., Feng, D. G.: Quantum public-key cryptosystems based on induced trapdoor one-way transformations. arXiv preprint arXiv:1012.5249 (2010)

  5. Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum public-key cryptosystem. Int. J. Theor. Phys. 51(3), 912–924 (2012)

    Article  MathSciNet  Google Scholar 

  6. Okamoto, T., Tanaka, K., Uchiyama, S.: Quantum public-key cryptosystems. In: Annual International Cryptology Conference, pp. 147–165. Springer, Berlin (2000)

  7. Lu, X., Feng, D.: Quantum digital signature based on quantum one-way functions. In The 7th International Conference on Advanced Communication Technology, 2005, ICACT 2005. Vol. 1, pp. 514–517. IEEE, South Korea, Phoenix Park (2005)

  8. Behera, A., Paul, G.: Quantum to classical one-way function and its applications in quantum money authentication. Quantum Inf. Process. 17(8), 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  9. Xin, X., Yang, Q., Li, F.: Quantum public-key signature scheme based on asymmetric quantum encryption with trapdoor information. Quantum Inf. Process. 19(8), 1–15 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Nikolopoulos, G.M., Ioannou, L.M.: Deterministic quantum-public-key encryption: forward search attack and randomization. Phys. Rev. A 79(4), 042327 (2009)

    Article  ADS  Google Scholar 

  11. Seyfarth, U., Nikolopoulos, G.M., Alber, G.: Symmetries and security of a quantum-public-key encryption based on single-qubit rotations. Phys. Rev. A 85(2), 022342 (2012)

    Article  ADS  Google Scholar 

  12. Wu, C., Yang, L.: Bit-oriented quantum public-key encryption. arXiv preprint arXiv:1501.05943 (2015)

  13. Kis, Z., Renzoni, F.: Qubit rotation by stimulated Raman adiabatic passage. Phys. Rev. A 65(3), 032318 (2002)

    Article  ADS  Google Scholar 

  14. Emary, C., Sham, L.J.: Optically controlled single-qubit rotations in self-assembled InAs quantum dots. J. Phys.: Condens. Matter 19(5), 056203 (2007)

  15. Morton, J.J., Tyryshkin, A.M., Ardavan, A., Porfyrakis, K., Lyon, S.A., Briggs, G.A.D.: Measuring errors in single-qubit rotations by pulsed electron paramagnetic resonance. Phys. Rev. A 71(1), 012332 (2005)

    Article  ADS  Google Scholar 

  16. Duclos-Cianci, G., Svore, K. M.: A state distillation protocol to implement arbitrary single-qubit rotations. arXiv preprint arXiv:1210.1980 (2012)

  17. Duclos-Cianci, G., Poulin, D.: Reducing the quantum-computing overhead with complex gate distillation. Phys. Rev. A 91(4), 042315 (2015)

    Article  ADS  Google Scholar 

  18. Wang, X., Liu, Y.M., Han, L.F., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication with high-dimensional quantum superdense coding. Int. J. Quantum Inf. 6(06), 1155–1163 (2008)

    Article  Google Scholar 

  19. Hendrych, M., Gallego, R., Mičuda, M., Brunner, N., Acín, A., Torres, J.P.: Experimental estimation of the dimension of classical and quantum systems. Nat. Phys. 8(8), 588–591 (2012)

    Article  Google Scholar 

  20. Brandt, F., Hiekkamäki, M., Bouchard, F., Huber, M., Fickler, R.: High-dimensional quantum gates using full-field spatial modes of photons. Optica 7(2), 98–107 (2020)

    Article  ADS  Google Scholar 

  21. Fickler, R., Hiekkamäki, M., Brandt, F., Bouchard, F., Prabhakar, S., Huber, M.: Multiport for high-dimensional quantum states using structured photons (Conference Presentation). In: Quantum Technologies 2020, Vol. 11347, p. 1134703. International Society for Optics and Photonics, Spain, Barcelona (2020)

  22. Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: High-capacity measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19(10), 1–14 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Verma, V., Singh, N., Singh, R.S.: Improvement on quantum teleportation of three and four qubit states using multi-qubit cluster states. Int. J. Theor. Phys. 60(10), 3973–3981 (2021)

    Article  MathSciNet  Google Scholar 

  24. Bechmann-Pasquinucci, H., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A 61(6), 062308 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  26. Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8(5), 75 (2006)

    Article  ADS  Google Scholar 

  27. Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82(3), 030301 (2010)

    Article  ADS  Google Scholar 

  28. Etcheverry, S., Cañas, G., Gómez, E.S., Nogueira, W.A.T., Saavedra, C., Xavier, G.B., Lima, G.: Quantum key distribution session with 16-dimensional photonic states. Sci. Rep. 3(1), 1–5 (2013)

    Article  Google Scholar 

  29. Wang, Y., She, K., Luo, Q., Yang, F., Zhao, C.: Symmetric weak ternary quantum homomorphic encryption schemes. Mod. Phys. Lett. B 30(07), 1650076 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zhang, Y., Shang, T., Liu, J.: A multi-valued quantum fully homomorphic encryption scheme. Quantum Inf. Process. 20(3), 1–25 (2021)

    ADS  MathSciNet  Google Scholar 

  31. Sun, X., Zhang, M., Zhang, H., Zhu, X.: Two-dimension chaotic-multivariate signature system. Int. J. Comput. Sci. Issues (IJCSI) 10(1), 708 (2013)

    Google Scholar 

  32. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53–61 (2011)

    Article  MathSciNet  Google Scholar 

  33. Marr, D., Nishihara, H.K.: Representation and recognition of the spatial organization of three-dimensional shapes. In: Proceedings of the Royal Society of London. Series B. Biological Sciences, 200(1140), 269–294 (1978)

  34. Ma, P.C., Zhan, Y.B.: Scheme for implementing assisted cloning of an unknown three-particle three-dimension equatorial entangled state. Int. J. Quantum Inf. 7(03), 653–660 (2009)

    Article  Google Scholar 

  35. Xiao, X.Q., Liu, J.M.: Scheme for assisted cloning an unknown arbitrary three-qubit state. Quantum Inf. Process. 10(4), 567–574 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Prof.Binju Wang for his kind help in correcting and improving the language of the manuscript. We also acknowledge the financial support from the Natural Science Foundations of Fujian Province and Hubei Province, China (Grant No. 2020J01812 and 2020CFB326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A The proof of the properties of generalized qubit rotation

Appendix A The proof of the properties of generalized qubit rotation

Similar to the proof of the superposition of binary qubit rotation, we first obtain \({\widetilde{R}}(\theta )\vert \psi _2\rangle \) by changing the phase and bit flip.

\({\widetilde{X}}\) and \({\widetilde{S}}\) are two N-dimensional quantum gates, the effect of \({\widetilde{X}}\) is to make \(\vert \psi _2\rangle \Rightarrow \vert \psi _1\rangle \) and \(\vert \psi _1\rangle \Rightarrow \vert \psi _2\rangle \), the effect of \({\widetilde{S}}\) is to change the phase of the quantum state by \(\frac{\pi }{2}\). Then we have

$$\begin{aligned} \begin{aligned} {\widetilde{R}}(\theta )_{({\hat{\alpha }})}\vert \psi _2\rangle&={\widetilde{X}}{{\widetilde{S}}}^2{\widetilde{R}}(\pi -\theta )_{({\hat{\alpha }})}\vert \psi _1\rangle \\&={\widetilde{X}}{{\widetilde{S}}}^2\left\{ {\cos \left( \frac{\theta }{2}\right) }\vert \psi _1\rangle +{\sin \left( \frac{\theta }{2}\right) }\vert \psi _2\rangle \right\} \\&={\widetilde{X}}\left\{ {\sin \left( \frac{\theta }{2}\right) \vert \psi _1\rangle -\cos \left( \frac{\theta }{2}\right) \vert \psi _2\rangle }\right\} \\&=-\sin \left( \frac{\theta }{2}\right) \vert \psi _1\rangle +\cos \left( \frac{\theta }{2}\right) \vert \psi _2\rangle .\\ \end{aligned} \end{aligned}$$
(A1)

Then it can be concluded that

$$\begin{aligned} \begin{aligned} {\widetilde{R}}(\theta _1+\theta _2)_{({\hat{\alpha }})}\vert \psi _1\rangle&=\cos \left( \frac{\theta _1}{2}+\frac{\theta _2}{2}\right) \vert \psi _1\rangle +\sin \left( \frac{\theta _1}{2}+\frac{\theta _2}{2}\right) \vert \psi _2\rangle \\&=\cos \left( \frac{\theta _1}{2}\right) \left\{ \cos \left( \frac{\theta _2}{2}\right) \vert \psi _1\rangle +\sin \left( \frac{\theta _2}{2}\right) \vert \psi _2\rangle \right\} \\&\quad +\sin \left( \frac{\theta _1}{2}\right) \left\{ \cos \left( \frac{\theta _2}{2}\right) \vert \psi _2\rangle -\sin \left( \frac{\theta _2}{2}\right) \vert \psi _1\rangle \right\} \\&={\widetilde{R}}(\theta _2)_{({\hat{\alpha }})}\left\{ \cos \left( \frac{\theta _1}{2}\right) \vert \psi _1\rangle +\sin \left( \frac{\theta _1}{2}\right) \vert \psi _2\rangle \right\} \\&={\widetilde{R}}(\theta _2)_{({\hat{\alpha }})}{\widetilde{R}}(\theta _1)_{({\hat{\alpha }})}\vert \psi _1\rangle .\\ \end{aligned} \end{aligned}$$
(A2)

It is proved that the generalized qubit rotation is also have superposition. The above conclusion can also be expressed as

$$\begin{aligned} \begin{aligned} {\widetilde{R}}(\theta _1)_{({\hat{\alpha }})}{\widetilde{R}}(\theta _2)_{({\hat{\alpha }})}\vert \psi \rangle&={\widetilde{R}}(\theta _1+\theta _2)_{({\hat{\alpha }})}\vert \psi _1\rangle \\&={\widetilde{R}}(\theta _2+\theta _1)_{({\hat{\alpha }})}\vert \psi _1\rangle \\&={\widetilde{R}}(\theta _2)_{({\hat{\alpha }})}{\widetilde{R}}(\theta _1)_{({\hat{\alpha }})}\vert \psi \rangle \\ \longrightarrow {\widetilde{R}}(\theta _1)_{({\hat{\alpha }})}{\widetilde{R}}(\theta _2)_{({\hat{\alpha }})}\vert \psi \rangle&={\widetilde{R}}(\theta _2)_{({\hat{\alpha }})}{\widetilde{R}}(\theta _1)_{({\hat{\alpha }})}\vert \psi \rangle .\\ \end{aligned} \end{aligned}$$
(A3)

Namely, generalized qubit rotation is commutative.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, G., Jian, L. et al. Ternary quantum public-key cryptography based on qubit rotation. Quantum Inf Process 21, 197 (2022). https://doi.org/10.1007/s11128-022-03541-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03541-6

Keywords

Navigation