Skip to main content
Log in

Reference-frame-independent quantum key distribution with modified coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Reference-frame-independent quantum key distribution (RFI-QKD) can generate secret keys in the presence of unknown and slowly drifting reference frames. Due to the unavoidable multiphoton events in practical weak coherent states (WCS), the decoy-state method is adopted to combat the potential photon-number-splitting attacks. In this paper, we adopt modified coherent states (MCS), which can eliminate certain multiphoton events based on quantum interference, to implement decoy-state RFI-QKD. Simulation results show that, compared with WCS, MCS can improve the secret key rate and transmission distance in RFI-QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  2. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005). https://doi.org/10.1103/PhysRevLett.94.230504

  3. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005). https://doi.org/10.1103/PhysRevLett.94.230503

    Article  ADS  Google Scholar 

  4. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005). https://doi.org/10.1103/PhysRevA.72.012326

    Article  ADS  Google Scholar 

  5. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. A 92, 057901 (2004). https://doi.org/10.1103/PhysRevLett.92.057901

    Article  ADS  Google Scholar 

  6. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018–3021 (1998). https://doi.org/10.1103/PhysRevLett.81.3018

    Article  ADS  Google Scholar 

  7. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007). https://doi.org/10.1103/PhysRevLett.98.230501

    Article  ADS  Google Scholar 

  8. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 9, 827–831 (2015). https://doi.org/10.1038/nature13303

    Article  Google Scholar 

  9. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012). https://doi.org/10.1103/PhysRevLett.108.130503

    Article  ADS  Google Scholar 

  10. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018). https://doi.org/10.1038/s41586-018-0066-6

    Article  ADS  Google Scholar 

  11. Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.-J., Nolan, D., Martin, A., Zbinden, H.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018). https://doi.org/10.1103/PhysRevLett.121.190502

    Article  ADS  Google Scholar 

  12. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.-B., Pan, J.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016). https://doi.org/10.1103/PhysRevLett.117.190501

    Article  ADS  Google Scholar 

  13. Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9, 021046 (2019). https://doi.org/10.1103/PhysRevX.9.021046

    Article  Google Scholar 

  14. Liao, S.-K., Cai, W.-Q., Liu, W.-Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017). https://doi.org/10.1038/nature23655

    Article  ADS  Google Scholar 

  15. Laing, A., Scarani, V., Rarity, J.G., O’Brien, J.L.: Reference-frame-independent quantum key distribution. Phys. Rev. A 82, 012304 (2010). https://doi.org/10.1103/PhysRevA.82.012304

    Article  ADS  Google Scholar 

  16. Yin, Z.-Q., Wang, S., Chen, W., Li, H.-W., Guo, G.-C., Han, Z.-F.: Reference-free-independent quantum key distribution immune to detector side channel attacks. Quant. Inf. Process. 13, 1237–1244 (2014). https://doi.org/10.1007/s11128-013-0726-2

    Article  ADS  MathSciNet  Google Scholar 

  17. Wang, C., Sun, S.-H., Ma, X.-C., Tang, G.-Z., Liang, L.-M.: Reference-frame-independent quantum key distribution with source flaws. Phys. Rev. A 92, 042319 (2015). https://doi.org/10.1103/PhysRevA.92.042319

    Article  ADS  Google Scholar 

  18. Zhu, J.-R., Zhang, C.-M., Wang, Q.: Reference-frame-independent measurement-device-independent quantum key distribution with imperfect sources. J. Phys. B At. Mol. Opt. Phys. 54, 145501 (2021). https://doi.org/10.1088/1361-6455/ac0c05

  19. Li, J.-J., Wang, Y., Li, H.-W., Peng, P., Zhou, C., Jiang, M.-S., Ma, H.-X., Feng, L.-X., Bao, W.-S.: Passive decoy-state reference-frame-independent quantum key distribution with heralded single-photon source. Chin. Phys. Lett. 34, 120301 (2017). https://doi.org/10.1088/0256-307X/34/12/120301

    Article  ADS  Google Scholar 

  20. Zhang, C., Zhu, J., Wang, Q.: Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases. J. Light. Technol. 35, 4574–4578 (2017). https://doi.org/10.1109/JLT.2017.2749402

    Article  ADS  Google Scholar 

  21. Lu, F.-Y., Yin, Z.-Q., Fan-Yuan, G.-J., Wang, R., Liu, H., Wang, S., Chen, W., He, D.-Y., Huang, W., Xu, B.-J., et al.: Efficient decoy states for the reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A 101, 052318 (2020). https://doi.org/10.1103/PhysRevA.101.052318

    Article  ADS  Google Scholar 

  22. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000). https://doi.org/10.1103/PhysRevLett.85.1330

    Article  ADS  MATH  Google Scholar 

  23. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000). https://doi.org/10.1103/PhysRevA.61.052304

    Article  ADS  Google Scholar 

  24. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44 (2002). https://doi.org/10.1088/1367-2630/4/1/344

    Article  ADS  Google Scholar 

  25. Lu, Y., Ou, Z.: Observation of nonclassical photon statistics due to quantum interference. Phys. Rev. Lett. 88, 023601 (2001). https://doi.org/10.1103/PhysRevLett.88.023601

    Article  ADS  Google Scholar 

  26. Lu, Y., Zhu, L., Ou, Z.: Security improvement by using a modified coherent state for quantum cryptography. Phys. Rev. A 71, 032315 (2005). https://doi.org/10.1103/PhysRevA.71.032315

    Article  ADS  Google Scholar 

  27. Yin, Z.-Q., Han, Z.-F., Sun, F.-W., Guo, G.-C.: Decoy state quantum key distribution with modified coherent state. Phys. Rev. A 76, 014304 (2007). https://doi.org/10.1103/PhysRevA.76.014304

    Article  ADS  Google Scholar 

  28. Li, M., Zhang, C.-M., Yin, Z.-Q., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Measurement-device-independent quantum key distribution with modified coherent state. Opt. Lett. 39, 880–883 (2014). https://doi.org/10.1364/OL.39.000880

    Article  ADS  Google Scholar 

  29. Zhang, C.-M., Zhu, J.-R., Wang, Q.: Reference-frame-independent measurement-device-independent quantum key distribution with modified coherent states. IEEE Photon. J. 10, 7600608 (2018). https://doi.org/10.1109/JPHOT.2018.2865423

    Article  Google Scholar 

  30. Zhang, C.-H., Zhang, C.-M., Wang, Q.: Twin-field quantum key distribution with modified coherent states. Opt. Lett. 44, 1468–1471 (2019). https://doi.org/10.1364/OL.44.001468

    Article  ADS  Google Scholar 

  31. Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014). https://doi.org/10.1364/OL.44.001468

    Article  ADS  Google Scholar 

  32. Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017). https://doi.org/10.1103/PhysRevA.95.012333

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (2019T120446, 2018M642281), Jiangsu Planned Projects for Postdoctoral Research Funds (2018K185C), Jiangsu Graduate Practice and Innovation Program (SJCX21_0262) and Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY221058, 1311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Mei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, LG., Zhang, CM. Reference-frame-independent quantum key distribution with modified coherent states. Quantum Inf Process 21, 161 (2022). https://doi.org/10.1007/s11128-022-03502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03502-z

Keywords

Navigation