Skip to main content
Log in

Applications of Simon’s algorithm in quantum attacks on Feistel variants

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Simon’s algorithm is a well-known quantum algorithm which can achieve an exponential acceleration over classical algorithm. It has been widely used in quantum cryptanalysis of many cryptographic primitives. This paper concentrates on studying the applications of Simon’s algorithm in analyzing the security of Feistel variants, several well-known cryptographic structures derived from the Feistel structure. First, we propose a definition of weakly periodic function to relax the original strong Simon’s promise. Based on this definition, we define and analyze several extensions of Simon’s problem which expand the application of Simon’s algorithm. Furthermore, based on one extended Simon’s problem, we show new polynomial-time quantum distinguishing attacks on several Feistel variants: MISTY L/R, CAST256-like, CLEFIA-like, MARS-like, SMS4-like and Skipjack-A/B-like schemes. These new results show that classically secure schemes may be no longer secure in the Q2 model. Finally, based on the quantum distinguishers introduced above, we extend several rounds forward or backward to propose corresponding quantum all subkeys recovery attacks that can recover all subkeys in the Q2 model with lower query complexities than those in the Q1 model by using Grover’s algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Broadbent, A., Schaffner, C.: Quantum cryptography beyond quantum key distribution. Des. Codes Crypt. 78(1), 351–382 (2016)

    Article  MathSciNet  Google Scholar 

  2. Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic Feistel constructions. In: International Conference on Security and Cryptography for Networks, pp. 386–403 (2018)

  3. Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin, T., Schrottenloher, A.: Saturnin: a suite of lightweight symmetric algorithms for post-quantum security. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SATURNIN-spec.pdf (2019). Accessed 19 May 2019

  4. Bonnetain, X.: Quantum key-recovery on full AEZ. In: SAC 2017, pp. 394–406 (2017)

  5. Hosoyamada, A., Sasaki, Y.: Cryptanalysis against symmetric-key schemes with online classical queries and offline quantum computations. In: RSA 2018, pp. 198–218 (2018)

  6. Mossayebi, S.: A concrete security treatment of symmetric encryption in a quantum computing world. Ph.D. Thesis, The University of London (2015)

  7. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 41–69 (2011)

  8. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: CRYPTO 2016, pp. 207–237 (2016)

  9. Zhandry, M.: How to construct quantum random functions. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, pp. 679–687 (2012)

  10. Damgård, I., Funder, J., Nielsen, J. B., Salvail, L.: Superposition attacks on cryptographic protocols. In: ICITS 2013, pp. 142–161 (2013)

  11. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: CRYPTO 2013, pp. 361–379 (2013)

  12. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: EUROCRYPT 2013, pp. 592–608 (2013)

  13. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  Google Scholar 

  14. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: IEEE International Symposium on Information Theory, pp. 2682–2685 (2010)

  15. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: International Symposium on Information Theory and its Applications, pp. 312–316 (2012)

  16. Dong, X., Dong, B., Wang, X.: Quantum attacks on some Feistel block ciphers. https://eprint.iacr.org/2018/504.pdf (2018). Accessed 19 May 2019

  17. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks. In: SAC 2019, pp. 492–519 (2019)

  18. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Y., Iwata, T.: Quantum chosen-ciphertext attacks against Feistel ciphers. In: RSA 2019, pp. 391–411 (2019)

  19. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput. 17(1 & 2), 65–78 (2017)

    MathSciNet  Google Scholar 

  20. Shi, T., Jin, C., Guan, J.: Collision attacks against AEZ-PRF for authenticated encryption AEZ. China Commun. 15(2), 46–53 (2018)

    Article  Google Scholar 

  21. Liu F., Liu F.: Universal forgery and key recovery attacks: application to FKS, FKD and Keyak. https://eprint.iacr.org/2017/691.pdf (2017) Accessed 19 May 2019

  22. Liu F., Liu F.: Universal forgery with birthday paradox: application to blockcipher-based message authentication codes and authenticated encryptions. https://eprint.iacr.org/2017/653.pdf (2017) Accessed 19 May 2019

  23. Xie, H., Yang, L.: Quantum miss-in-the-middle attack. https://arxiv.org/pdf/1812.08499.pdf (2018) Accessed 20 May 2019

  24. Hosoyamada, A., Aoki, K.: On quantum related-key attacks on iterated Even–Mansour ciphers. In: 12th International Workshop on Security, pp. 3–18 (2017)

  25. Leander, G., May, A.: Grover meets Simon-quantumly attacking the FX-construction. In: ASIACRYPT 2017, pp. 161–178 (2017)

  26. Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. Sci. China Inf. Sci. 61, 102501 (2018)

    Article  Google Scholar 

  27. Dong, X., Li, Z., Wang, X.: Quantum cryptanalysis on some generalized Feistel schemes. Sci. China Inf. Sci. 62, 22501 (2019)

    Article  MathSciNet  Google Scholar 

  28. Ni, B., Dong, X.: Improved quantum attack on type-1 generalized Feistel schemes and its application to CAST-256. https://eprint.iacr.org/2019/318.pdf (2019). Accessed 19 May 2019

  29. Ito, G., Iwata, T.: Quantum distinguishing attacks against type-1 generalized Feistel ciphers.https://eprint.iacr.org/2019/327.pdf (2019). Accessed 19 May 2019

  30. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis of AES. https://eprint.iacr.org/2019/272.pdf (2019). Accessed 19 May 2019

  31. Matsui, M.: New block encryption algorithm MISTY. In: FSE 1997, pp. 54–68 (1997)

  32. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers provably secure and not relying on any unproved hypotheses. In: CRYPTO 1989, pp. 461–480 (1989)

  33. Adams, C., Gilchrist, J.: The CAST-256 encryption algorithm. https://www.rfc-editor.org/info/rfc2612 (1999). Accessed 20 May 2019

  34. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (Extended abstract). In: FSE 2007, pp. 181–195 (2007)

  35. Burwick, C., Coppersmith, D., D’Avignon, E., et al.: MARS—a candidate cipher for AES. http://cryptosoft.de/docs/Mars.pdf (1999) Accessed 20 May 2019

  36. Diffie, W., Ledin, G.: SMS4 encryption algorithm for wireless networks. https://eprint.iacr.org/2008/329.pdf (2008). Accessed 20 May 2019

  37. National Security Agency: SKIPJACK and KEA algorithm specifications. https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/skipjack/skipjack.pdf (1998). Accessed 20 May 2019

  38. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  39. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-secure message authentication via blind-unforgeability. https://eprint.iacr.org/2018/1150.pdf (2018). Accessed 21 May 2019

  40. Loceff, M.: A course in quantum computing. http://lapastillaroja.net/wp-content/uploads/2016/09/Intro_to_QC_Vol_1_Loceff.pdf (2016). Accessed 5 Jan 2019

  41. Brassard, G., Høyer, P., Mosca, M.: Quantum amplitude amplification and estimation. Quantum computation and information: a millennium volume. Contemp. Math. 305, 53–74 (2002)

    Article  Google Scholar 

  42. Fuller, L.E.: Basic Matrix Theory. Courier Dover Publications, Mineola (2017)

    MATH  Google Scholar 

  43. Murphy, S., Robshaw, M.J.B.: Key-dependent S-boxes and differential cryptanalysis. Des. Codes Crypt. 27(3), 229–255 (2002)

    Article  MathSciNet  Google Scholar 

  44. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials in block ciphers. J. Math. Crypt. 1(3), 221–242 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Shi, T.R., Jin, C.H., Hu, B., et al.: Complete analysis of Simon’s quantum algorithm with additional collisions. Quantum Inf. Process. 18(11), 334 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

    Article  MathSciNet  Google Scholar 

  47. Treger, J., Patarin, J.: Generic attacks on Feistel networks with internal permutations. In: AFRICACRYPT 2009, pp. 41–59 (2009)

  48. Gilbert, H., Minier, M.: New results on the pseudorandomness of some blockcipher constructions. In; FSE 2001, pp. 248–266 (2001)

  49. Moriai, S., Vaudenay, S.: On the pseudorandomness of top-level schemes of block ciphers. In: ASIACRYPT 2000, pp. 289–302 (2000)

  50. Zhang, L.T., Wu, W.L.: Pseudorandomness and super pseudorandomness on the unbalanced feistel networks with contracting functions. Chin. J. Comput. 32(7), 1320–1330 (2009)

    Article  MathSciNet  Google Scholar 

  51. Wu, W.L., Wei, H.R.: Pseudorandomness on the round-structure of Skipjack. Chin. Inst. Electron. 15(3), 378–383 (2006)

    Google Scholar 

  52. Samajder, S., Sarkar, P.: Another look at success probability in linear cryptanalysis. https://eprint.iacr.org/2017/391.pdf (2017). Accessed 19 May 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Guo, J. & Ding, S. Applications of Simon’s algorithm in quantum attacks on Feistel variants. Quantum Inf Process 20, 117 (2021). https://doi.org/10.1007/s11128-021-03027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03027-x

Keywords

Navigation