Skip to main content
Log in

Mermin polynomials for non-locality and entanglement detection in Grover’s algorithm and Quantum Fourier Transform

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The non-locality and thus the presence of entanglement of a quantum system can be detected using Mermin polynomials. This gives us a means to study non-locality evolution during the execution of quantum algorithms. We first consider Grover’s quantum search algorithm, noticing that states during the execution of the algorithm reach a maximum for an entanglement measure when close to a predetermined state, which allows us to search for a single optimal Mermin operator and use it to evaluate non-locality through the whole execution of Grover’s algorithm. Then the Quantum Fourier Transform is also studied with Mermin polynomials. A different optimal Mermin operator is searched for at each execution step, since in this case nothing hints us at finding a predetermined state maximally violating the Mermin inequality. The results for the Quantum Fourier Transform are compared to results from a previous study of entanglement with Cayley hyperdeterminant. All our computations can be repeated thanks to a structured and documented open-source code that we provide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The source code is available at https://quantcert.github.io/Mermin-eval.

  2. http://www.sagemath.org.

  3. https://www.maplesoft.com/.

References

  1. Alsina, D., Cervera, A., Goyeneche, D., Latorre, J.I., Życzkowski, K.: Operational approach to Bell inequalities: application to qutrits. Phys. Rev. A 94(3), 032102 (2016)

    Article  ADS  Google Scholar 

  2. Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a 5-qubit quantum computer. Phys. Rev. A 94(1), 012314 (2016)

    Article  ADS  Google Scholar 

  3. Brunner, N., Gisin, N., Scarani, V.: Entanglement and non-locality are different resources. New J. Phys. 7, 88 (2005)

    Article  ADS  Google Scholar 

  4. Biham, O., Nielsen, M.A., Osborne, T.J.: Entanglement monotone derived from Grover’s algorithm. Phys. Rev. A 65(6), 062312 (2002)

    Article  ADS  Google Scholar 

  5. Batle, J., Ooi, C.H.R., Farouk, A., Alkhambashi, M.S., Abdalla, S.: Global versus local quantum correlations in the Grover search algorithm. Quantum Inf. Process. 15(2), 833–849 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Braunstein, S.L., Pati, A.K.: Speed-up and entanglement in quantum searching. Quantum Inf. Comput. 2(5), 399–409 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Chakraborty, S., Banerjee, S., Adhikari, S., Kumar, A.: Entanglement in the Grover’s search algorithm. arXiv:1305.4454 [quant-ph] (2013)

  8. Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body non-separability. Phys. Rev. Lett. 88(17), 170405 (2002)

    Article  ADS  Google Scholar 

  9. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)

    Article  ADS  Google Scholar 

  10. Ekert, A., Jozsa, R.: Quantum algorithms: entanglement-enhanced information processing. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356, 1769–1782 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  11. Grover, L.K.: A Fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96. New York, NY, USA. ACM, pp. 212–219 (1996)

  12. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1), 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gour, G., Wallach, N.R.: On symmetric SL-invariant polynomials in four qubits. In: Howe, R., Hunziker, M., Willenbring, J.F. (eds.) Symmetry: Representation Theory and Its Applications. Honor of Nolan R. Wallach, Progress in Mathematics, pp. 259–267. Springer, New York, NY (2014)

    Chapter  Google Scholar 

  14. Holweck, F., Jaffali, H., Nounouh, I.: Grover’s algorithm and the secant varieties. Quantum Inf. Process. 15(11), 4391–4413 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)

    Article  Google Scholar 

  16. Higuchi, A., Sudbery, A.: How entangled can two couples get? Phys. Lett. A 273(4), 213–217 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Jaffali, H., Holweck, F.: Quantum Entanglement involved in Grover’s and Shor’s algorithms: the four-qubit case. Quantum Inf. Process. 18(5), 133 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jozsa, R., Linden, N.: On the role of entanglement in quantum computational speed-up. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kendon, V.M., Munro, W.J.: Entanglement and its role in Shor’s algorithm. Quantum Inf. Comput. 6(7), 630–640 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Lavor, C., Manssur, L.R.U., Portugal, R.: Grover’s Algorithm: Quantum Database Search. arXiv:quant-ph/0301079 (2003)

  21. Luque, J.-G., Thibon, J.-Y.: The polynomial invariants of four qubits. Phys. Rev. A 67(4), 042303 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65(15), 1838–1840 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43(9), 4273–4278 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Miyake, A., Wadati, M.: Multipartite entanglement and hyperdeterminants. Quantum Inf. Comput. 2(7), 540–555 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th, Anniversary edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  26. Osterloh, A., Siewert, J.: Entanglement monotones and maximally entangled states in multipartite qubit systems. Int. J. Quantum Inf. 04(03), 531–540 (2006)

    Article  Google Scholar 

  27. Rossi, M., Bruß, D., Macchiavello, C.: Scale invariance of entanglement dynamics in Grover’s quantum search algorithm. Phys. Rev. A Atom. Mol. Opt. Phys. 87(2), 1–5 (2013)

    Google Scholar 

  28. Shimony, A.: Degree of entanglement. Ann. N. Y. Acad. Sci. 755(1), 675–679 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  29. Shor, P.W., Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. Santa Fe, NM, USA, : IEEE Comput. Press, Soc, pp. 124–134 (1994)

  30. Shimoni, Y., Shapira, D., Biham, O.: Entangled quantum states generated by Shor’s factoring algorithm. Phys. Rev. A 72(6), 062308 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. Toth, G., Guehne, O.: Entanglement detection in the stabilizer formalism. Phys. Rev. A 72(2), 022340 (2005)

    Article  ADS  Google Scholar 

  32. Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65(5), 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. Wei, T.-C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68(4), 042307 (2003)

    Article  ADS  Google Scholar 

  34. Ying, M.: Floyd–Hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33(6), 1–49 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the French Investissements d’Avenir program, project ISITE-BFC (contract ANR-15-IDEX-03), and by the EIPHI Graduate School (contract ANR-17-EURE-0002). The computations have been performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.

We thank the reviewers of the previous versions of this paper for their valuable comments and remarks, that have helped improving its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri de Boutray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Explicit states for Grover’s algorithm

Proposition 2

[14, Observation 1] The state \(|\varphi _k\rangle \) after k iterations of Grover’s algorithm can be written as follows:

$$\begin{aligned} |\varphi _k\rangle = \tilde{\alpha }_k \sum _{\mathbf{x}\in S} |\mathbf{x}\rangle + \tilde{\beta }_k |+\rangle ^{\otimes n} \end{aligned}$$
(10)

with \(\tilde{\alpha }_k=\dfrac{\cos (\frac{2k+1}{2} \theta )}{\sqrt{|S|}} - \dfrac{\sin (\frac{2k + 1}{2}\theta )}{\sqrt{N - |S|}}\) and \(\tilde{\beta }_k = 2^{n/2} \dfrac{\sin (\frac{2k + 1}{2}\theta )}{\sqrt{N-|S|}}\).

Proof

With \(|\varphi _0\rangle = |+\rangle ^{\otimes n}\), we can write:

$$\begin{aligned} |\varphi _k\rangle = \mathcal {L}^k|\varphi _0\rangle = \dfrac{a_k}{\sqrt{|S|}}\sum _ {\mathbf{x}\in S} |\mathbf{x}\rangle + \dfrac{b_k}{\sqrt{N-|S|}}\sum _{\mathbf{x}\notin S} |\mathbf{x}\rangle \end{aligned}$$

where \(\mathcal {L}\) is the loop (oracle and diffusion operator) in Grover’s algorithm.

The oracle is a reflection about \((\sum _{\mathbf{x}\in S}|\mathbf{x}\rangle )^\bot = \sum _{\mathbf{x}\notin S} |\mathbf{x}\rangle \) and the diffusion operator is a reflection about \(|+\rangle ^{\otimes n}\). The composition of these two symmetries is a rotation whose angle \(\theta \) is the double of the angle between \(\sum _{\mathbf{x}\notin S} |\mathbf{x}\rangle \) and \(|+\rangle ^{\otimes n}\). So,

$$\begin{aligned} |+\rangle ^{\otimes n}= & {} \frac{1}{\sqrt{|S|}}\sin (\frac{\theta }{2}) \sum _{\mathbf{x}\in S}|\mathbf{x}\rangle +\frac{1}{\sqrt{N-|S|}}\cos (\frac{\theta }{2}) \sum _{\mathbf{x}\notin S} |\mathbf{x}\rangle \\ \frac{1}{\sqrt{N}} \left( \sum _{\mathbf{x}\in S} |\mathbf{x}\rangle +\sum _{\mathbf{x}\notin S} |\mathbf{x}\rangle \right)= & {} \frac{1}{\sqrt{|S|}}\sin (\frac{\theta }{2}) \sum _{\mathbf{x}\in S}|\mathbf{x}\rangle +\frac{1}{\sqrt{N-|S|}}\cos (\frac{\theta }{2}) \sum _{\mathbf{x}\notin S} |\mathbf{x}\rangle \\ \frac{1}{\sqrt{N}}\sum _{\mathbf{x}\in S} |\mathbf{x}\rangle= & {} \frac{1}{\sqrt{|S|}}\sin (\frac{\theta }{2}) \sum _{\mathbf{x}\in S} |\mathbf{x}\rangle \\ \frac{1}{\sqrt{N}}= & {} \frac{1}{\sqrt{|S|}}\sin (\frac{\theta }{2})\\ \sin (\frac{\theta }{2})= & {} \sqrt{\frac{|S|}{N}}. \end{aligned}$$

The fact that \(\mathcal {L}\) is a rotation of angle \(\theta \) gives \(a_k=\sin \left( \theta _k\right) \) and \(b_k = \cos \left( \theta _k \right) \) with \(\theta _k = k \theta + \theta /2\). Equation (1) then comes from \(\alpha _k = \frac{1}{\sqrt{|S|}}\sin (\frac{2k + 1}{2} \theta )\) and \(\beta _k = \frac{1}{\sqrt{N-|S|}}\cos (\frac{2k + 1}{2}\theta )\).

With this, we can now take \(\tilde{\alpha }_k = \alpha _k - \beta _k\) and \(\tilde{\beta }_k = 2^{n/2} \beta _k\) which gives us

$$\begin{aligned} |\varphi _k\rangle= & {} \alpha _k \sum _{\mathbf{x}\in S} |\mathbf{x}\rangle + \beta _k \sum _{\mathbf{x}\notin S} |\mathbf{x}\rangle \\= & {} (\alpha _k - \beta _k) \sum _{\mathbf{x}\in S} |\mathbf{x}\rangle + \beta _k \sum _{\mathbf{x}=0}^{N-1} |\mathbf{x}\rangle \\= & {} \tilde{\alpha }_k\sum _{\mathbf{x}\in S}|\mathbf{x}\rangle + \tilde{\beta }_k |+\rangle ^{\otimes n} \end{aligned}$$

since \(|+\rangle ^{\otimes n} = \left( \frac{1}{\sqrt{2}}\right) ^n \sum _{\mathbf{x}=0}^{N-1} |\mathbf{x}\rangle \). \(\square \)

Proposition 3

In Proposition 2, \(\tilde{\alpha }_k\) increases for k between 0 and \(\frac{\pi }{4}\sqrt{\frac{N}{|S|}}-\frac{1}{2}\) and \(\tilde{\beta }_k\) decreases on the same interval.

Proof

The optimal number of iterations of the loop \(\mathcal {L}\) in Grover’s algorithm is the smallest value \(k_{opt}\) of k such that \(a_k = 1\), i.e., \(\theta _{k_{opt}} = \pi /2\). With \(|S|\ll N\), \(\sin \left( \theta /2\right) =\sqrt{|S|/N}\) gives \(\theta \approx 2\sqrt{|S|/N}\) and \(\theta _k \approx (2k+1)\sqrt{|S|/N}\). Finally \((2k_{opt}+1)\sqrt{|S|/N}\) optimally approximates \(\pi /2\) if \(k_{opt} = \left\lfloor \frac{\pi }{4}\sqrt{\frac{N}{|S|}}-\frac{1}{2} \right\rceil = \left\lfloor \frac{\pi }{4}\sqrt{\frac{N}{|S|}} \right\rfloor \).

Moreover, \(a_k=\sin \left( \theta _k\right) \) and \(\alpha _k = \frac{1}{\sqrt{|S|}} a_k\) are increasing and \(b_k = \cos \left( \theta _k \right) \) and \(\beta _k = \frac{1}{\sqrt{N-|S|}} b_k\) are decreasing for k from 0 to \(\left( \frac{\pi }{4}\sqrt{\frac{N}{|S|}}-\frac{1}{2}\right) \). From the expressions \(\tilde{\alpha }_k = \alpha _k - \beta _k\) and \( \tilde{\beta }_k = 2^{n/2} \beta _k\), we get the result of the proposition.\(\square \)

Appendix B Cayley hyperdeterminant \(\varDelta _{2222}\)

Let \(|\varphi \rangle =\sum _{i,j,k,l\in \{0,1\}} a_{i,j,k,l}|ijkl\rangle \) be a four-qubit state. The algebra of polynomial invariants for the four-qubit Hilbert space can be generated by the four polynomials H, L, M and D defined as follows [21]:

$$\begin{aligned} H= & {} a_{0000}a_{1111} - a_{1000}a_{0111} - a_{0100}a_{1011} + a_{1100}a_{0011}\\&-a_{0010}a_{1101} + a_{1010}a_{0101} + a_{0110}a_{1001} - a_{1110}a_{0001} \end{aligned}$$

is an invariant of degree 2.

$$\begin{aligned} L=\left| \begin{array}{cccc} a_{0000}&{}a_{0010}&{}a_{0001}&{}a_{0011}\\ a_{1000}&{}a_{1010}&{}a_{1001}&{}a_{1011}\\ a_{0100}&{}a_{0110}&{}a_{0101}&{}a_{0111}\\ a_{1100}&{}a_{1110}&{}a_{1101}&{}a_{1111} \end{array}\right| \quad \text{ and } M=\left| \begin{array}{cccc} a_{0000}&{}a_{0001}&{}a_{0100}&{}a_{0101}\\ a_{1000}&{}a_{1001}&{}a_{1100}&{}a_{1101}\\ a_{0010}&{}a_{0011}&{}a_{0110}&{}a_{0111}\\ a_{1010}&{}a_{1011}&{}a_{1110}&{}a_{1111} \end{array}\right| \end{aligned}$$

are two invariants of degree 4.

Consider the partial derivative

$$\begin{aligned} b_{xt}:=\det \left( \dfrac{\partial ^2 A}{\partial y_i\partial z_j}\right) \end{aligned}$$

of the quadrilinear form \(A =\sum _{i,j,k,l\in \{0,1\}} a_{i,j,k,l} x_i y_j z_k t_l\) with respect to the variables y and z. This quadratic form with variables x and t can be interpreted as a bilinear form on the three-dimensional space \(\text {Sym}^2(\mathbb {C}^2)\), i.e., there is a \(3\times 3\) matrix \(B_{xt}\) satisfying

$$\begin{aligned} b_{xt}=[x_0^2,x_0x_1,x_1^2]~B_{xt}~\left[ \begin{array}{c} t_0^2\\ t_0t_1\\ t_1^2 \end{array}\right] . \end{aligned}$$

Then \(D =\det (B_{xt})\) is an invariant of degree 6.

Let’s introduce the invariant polynomials

$$\begin{aligned} U= & {} H^2-4(L-M), \quad V=12(HD-2LM),\\ S= & {} \dfrac{1}{12}(U^2-2V) \quad \text{ and } \quad T=\dfrac{1}{216}(U^3-3UV+216D^2). \end{aligned}$$

Then the Cayley hyperdeterminant is [21]:

$$\begin{aligned} \varDelta _{2222}=S^3-27T^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Boutray, H., Jaffali, H., Holweck, F. et al. Mermin polynomials for non-locality and entanglement detection in Grover’s algorithm and Quantum Fourier Transform. Quantum Inf Process 20, 91 (2021). https://doi.org/10.1007/s11128-020-02976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02976-z

Keywords

Navigation