Skip to main content

Advertisement

Log in

Strong polygamy of multi-party q-expected quantum correlations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We show that the polygamous nature of multi-party quantum correlations can be characterized in a stronger form based on Tsallis q-entropy and q-expectation value; we establish a class of strong polygamy inequalities of multi-party entanglement in terms of Tsallis q-entropy and q-expectation value for \(q \ge 1\). Our new class of inequalities is tighter than the usual polygamy inequalities of multi-party entanglement, and the tightness is explicitly illustrated by an example. Moreover, our new class of inequalities is concerned with the entanglement distributed between a single party and any possible subsets of the rest parties, whereas the usual polygamy inequality only considers the entanglement between one party and another. We further establish the equivalence between strong polygamy of quantum entanglement and quantum discord distributed in multi-party quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Equivalently, for a quantum state \(\rho \) with a spectral decomposition \(\rho =\sum _i \lambda _i \left| e_i\right\rangle \left\langle e_i\right| \).

  2. Without loss of generality, we may assume the (\(n+1\))-party state \(\rho _{AB_1\ldots B_n}\) is an (\(n+1\))-qudit state by taking d as the largest dimension of the subsystems.

  3. That is, \(\{{{\mathbb {X}}}| \varnothing \ne {{\mathbb {X}}}\subset {{\mathbb {B}}}\}=\{{{\mathbb {X}}}^c| \varnothing \ne {{\mathbb {X}}}\subset {{\mathbb {B}}}\}\).

  4. For \(q>0\) and any three-party pure state \(\left| \psi \right\rangle _{ABC}\) with two-party reduced density matrices \(\rho _{AB}=\text {Tr}_C\left| \psi \right\rangle _{ABC}\left\langle \psi \right| \) and \(\rho _{AC}=\text {Tr}_B\left| \psi \right\rangle _{ABC}\left\langle \psi \right| \),

    $$\begin{aligned} S_q\left( \rho _{A|B}\right) +S_q\left( \rho _{A|C}\right) =0. \end{aligned}$$

References

  1. Kim, J.S., Gour, G., Sanders, B.C.: Limitations to sharing entanglement. Contemp. Phys. 53(5), 417–432 (2012)

    Article  ADS  Google Scholar 

  2. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  3. Osborne, T., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  Google Scholar 

  4. Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)

    Article  ADS  Google Scholar 

  5. Kim, J.S., Sanders, B.C.: Monogamy of multi-qubit entanglement in terms of Rényi and Tsallis entropies. J. Phys. A Math. Theor. 43, 445305 (2010)

    Article  Google Scholar 

  6. Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kim, J.S., Sanders, B.C.: Unified entropy, entanglement measures and monogamy of multi-party entanglement. J. Phys. A Math. Theor. 44, 295303 (2011)

    Article  MathSciNet  Google Scholar 

  8. Gour, G., Bandyopadhay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Buscemi, F., Gour, G., Kim, J.S.: Polygamy of distributed entanglement. Phys. Rev. A 80, 012324 (2009)

    Article  ADS  Google Scholar 

  10. Kim, J.S.: Polygamy of entanglement in multipartite quantum systems. Phys. Rev. A 80, 022302 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kim, J.S.: Unification of multiqubit polygamy inequalities. Phys. Rev. A. 85, 032335 (2012)

    Article  ADS  Google Scholar 

  12. Kim, J.S.: General polygamy inequality of multiparty quantum entanglement. Phys. Rev. A 85, 062302 (2012)

    Article  ADS  Google Scholar 

  13. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Scarani, V., Gisin, N.: Quantum Communication between \(N\) Partners and Bell’s Inequalities. Phys. Rev. Lett. 87, 117901 (2001)

    Article  ADS  Google Scholar 

  15. Cheng, S., Hall, M.J.W.: Anisotropic invariance and the distribution of quantum correlations. Phys. Rev. Lett. 118, 010401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bai, Y.-K., Zhang, N., Ye, M.-Y., Wang, Z.D.: Exploring multipartite quantum correlations with the square of quantum discord. Phys. Rev. A 88, 012123 (2013)

    Article  ADS  Google Scholar 

  17. Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82, 032313 (2010)

    Article  ADS  Google Scholar 

  18. Coleman, A.J.: Structure of Fermion density matrices. Rev. Mod. Phys. 35, 668 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  19. Coleman A.J., Yukalov V.I.: Reduced Density Matrices. Lecture Notes in Chemistry Vol. 72 (Springer-Verlag, Berlin, 2000)

  20. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. Landsberg, P.T., Vedral, V.: Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 247, 211–217 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lima, A.R., Penna, T.J.P.: Tsallis statistics with normalized \(q\)-expectation values is thermodynamically stable: illustrations. Phys. Lett. A 256, 221–226 (1999)

    Article  ADS  Google Scholar 

  23. Abe, S.: Why \(q\)-expectation values must be used in nonextensive statistical mechanics. Astrophys. Space Sci. 305, 241–245 (2006)

    Article  ADS  Google Scholar 

  24. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47, 355 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. Abe, S., Rajagopal, A.K.: Nonadditive conditional entropy and its significance for local realism. Phys. A 289, 157–164 (2001)

    Article  MathSciNet  Google Scholar 

  26. Tsallis, C., Lloyd, S., Baranger, M.: Peres criterion for separability through nonextensive entropy. Phys. Rev. A 63, 042104 (2001)

    Article  ADS  Google Scholar 

  27. Rossignoli, R., Canosa, N.: Generalized entropic criterion for separability Phys. Rev. A 66, 042306 (2002)

    Article  Google Scholar 

  28. Rajagopal, A.K., Rendell, R.W.: Classical statistics inherent in a quantum density matrix. Phys. Rev. A 72, 022322 (2005)

    Article  ADS  Google Scholar 

  29. Battle, J., Plastino, A.R., Casas, M., Plastino, A.: Conditional \(q\)-entropies and quantum separability: a numerical exploration. J. Phys. A 35, 10311–10324 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kim, J.S.: Strong polygamy of quantum correlations in multi-party quantum systems. Eur. Phys. J. D 68, 324 (2014)

    Article  ADS  Google Scholar 

  31. Kim, J.S.: Tsallis entropy, \(q\)-expectation value, and constraints on three-party quantum correlations. Phys. Rev. A 100, 032327 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  33. Cohen, O.: Unlocking hidden entanglement with classical information. Phys. Rev. Lett. 80, 2493 (1998)

    Article  ADS  Google Scholar 

  34. Kim, J.S.: Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev. A 94, 062338 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017109 (2001)

    Article  Google Scholar 

  36. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  37. Chi, D.P., Kim, J.S., Lee, K.: Generalized entropy and global quantum discord in multiparty quantum systems. Phys. Rev. A 87, 062339 (2013)

    Article  ADS  Google Scholar 

  38. Xi, Z., Fan, H., Li, Y.: One-way unlocalizable quantum discord. Phys. Rev. A 85, 052102 (2012)

    Article  ADS  Google Scholar 

  39. Kim, J.S.: Polygamy of multiparty q-expected quantum entanglement. Phys. Rev. A 100, 062332 (2019)

    Article  ADS  Google Scholar 

  40. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. The Netherlands, Kluwer Academic, Dordrecht (1989)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program (NRF-2020R1F1A1A010501270) and Quantum Computing Technology Development Program (NRF-2020M3E4A1080088) through the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong San Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.S. Strong polygamy of multi-party q-expected quantum correlations. Quantum Inf Process 20, 34 (2021). https://doi.org/10.1007/s11128-020-02974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02974-1

Keywords

Navigation